157 research outputs found
MBMF: Model-Based Priors for Model-Free Reinforcement Learning
Reinforcement Learning is divided in two main paradigms: model-free and
model-based. Each of these two paradigms has strengths and limitations, and has
been successfully applied to real world domains that are appropriate to its
corresponding strengths. In this paper, we present a new approach aimed at
bridging the gap between these two paradigms. We aim to take the best of the
two paradigms and combine them in an approach that is at the same time
data-efficient and cost-savvy. We do so by learning a probabilistic dynamics
model and leveraging it as a prior for the intertwined model-free optimization.
As a result, our approach can exploit the generality and structure of the
dynamics model, but is also capable of ignoring its inevitable inaccuracies, by
directly incorporating the evidence provided by the direct observation of the
cost. Preliminary results demonstrate that our approach outperforms purely
model-based and model-free approaches, as well as the approach of simply
switching from a model-based to a model-free setting.Comment: After we submitted the paper for consideration in CoRL 2017 we found
a paper published in the recent past with a similar method (see related work
for a discussion). Considering the similarities between the two papers, we
have decided to retract our paper from CoRL 201
Low-cost Sensor Glove with Force Feedback for Learning from Demonstrations using Probabilistic Trajectory Representations
Sensor gloves are popular input devices for a large variety of applications
including health monitoring, control of music instruments, learning sign
language, dexterous computer interfaces, and tele-operating robot hands. Many
commercial products as well as low-cost open source projects have been
developed. We discuss here how low-cost (approx. 250 EUROs) sensor gloves with
force feedback can be build, provide an open source software interface for
Matlab and present first results in learning object manipulation skills through
imitation learning on the humanoid robot iCub.Comment: 3 pages, 3 figures. Workshop paper of the International Conference on
Robotics and Automation (ICRA 2015
- …