31 research outputs found

    Transcranial magnetic stimulation: the road to clinical therapy for dystonia

    Get PDF
    Despite many research studies, transcranial magnetic stimulation (TMS) is not yet an FDA-approved clinical therapy for dystonia patients. This review describes the four major challenges that have historically hindered the clinical translation of TMS. The four challenges described are limited types of clinical trial designs, limited evidence on objective behavioral measures, variability in the TMS clinical response, and the extensive TMS parameters to optimize for clinical therapy. Progress has been made to diversify the types of clinical trial design available to clinical researchers, identify evidence-based objective behavioral measures, and reduce the variability in TMS clinical response. Future studies should identify objective behavioral measures for other dystonia subtypes and expand the optimal TMS stimulation parameters for clinical therapy. Our review highlights the key progress made to overcome these barriers and gaps that remain for TMS to develop into a long-lasting clinical therapy for dystonia patients

    Circuit-Selective Striatal Synaptic Dysfunction in the Sapap3 Knockout Mouse Model of Obsessive-Compulsive Disorder

    Get PDF
    Background: Synapse-associated protein 90/postsynaptic density protein 95-associated protein 3 (SAPAP3) is an excitatory postsynaptic protein implicated in the pathogenesis of obsessive-compulsive behaviors. In mice, genetic deletion of Sapap3 causes obsessive-compulsive disorder (OCD)-like behaviors that are rescued by striatal expression of Sapap3, demonstrating the importance of striatal neurotransmission for the OCD-like behaviors. In the striatum, there are two main excitatory synaptic circuits, corticostriatal and thalamostriatal. Neurotransmission defects in either or both of these circuits could potentially contribute to the OCD-like behaviors of Sapap3 knockout (KO) mice. Previously, we reported that Sapap3 deletion reduces corticostriatal alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid-type glutamate receptor-mediated synaptic transmission. Methods: Whole-cell electrophysiological recording techniques in acute brain slices were used to measure synaptic transmission in the corticostriatal and thalamostriatal circuits of Sapap3 KO mice and littermate control animals. Transgenic fluorescent reporters identified striatopallidal and striatonigral projection neurons. SAPAP isoforms at corticostriatal and thalamostriatal synapses were detected using immunostaining techniques. Results: I n contrast to corticostriatal synapses, thalamostriatal synaptic activity is unaffected by Sapap3 deletion. At the molecular level, we find that another SAPAP family member, SAPAP4, is present at thalamostriatal, but not corticostriatal, synapses. This finding provides a molecular rationale for the functional divergence we observe between thalamic and cortical striatal circuits in Sapap3 KO mice. Conclusions: These findings define the circuit-level neurotransmission defects in a genetic mouse model for OCD-related behaviors, focusing attention on the corticostriatal circuit for mediating the behavioral abnormalities. Our results also provide the first evidence that SAPAP isoforms may be localized to synapses according to circuit-selective principles.National Institute of Mental Health (U.S.) (Grant MH081201

    Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice

    Get PDF
    Obsessive-compulsive disorder (OCD) is an anxiety-spectrum disorder characterized by persistent intrusive thoughts (obsessions) and repetitive actions (compulsions). Dysfunction of cortico-striato-thalamo-cortical circuitry is implicated in OCD, though the underlying pathogenic mechanisms are unknown. SAP90/PSD95-associated protein 3 (SAPAP3) is a postsynaptic scaffolding protein at excitatory synapses that is highly expressed in the striatum. Here we show that mice with genetic deletion of SAPAP3 exhibit increased anxiety and compulsive grooming behavior leading to facial hair loss and skin lesions; both behaviors are alleviated by a selective serotonin reuptake inhibitor. Electrophysiological, structural, and biochemical studies of SAPAP3 mutant mice reveal defects in cortico-striatal synapses. Furthermore, lentiviral-mediated selective expression of SAPAP3 in the striatum rescues the synaptic and behavioral defects of SAPAP3 mutant mice. These findings demonstrate a critical role for SAPAP3 at cortico-striatal synapses and emphasize the importance of cortico-striatal circuitry in OCD-like behaviors

    Prospective Home-use Study on Non-invasive Neuromodulation Therapy for Essential Tremor.

    Get PDF
    Highlights: This prospective study is one of the largest clinical trials in essential tremor to date. Study findings suggest that individualized non-invasive neuromodulation therapy used repeatedly at home over three months results in safe and effective hand tremor reduction and improves quality of life for many essential tremor patients. Background: Two previous randomized, controlled, single-session trials demonstrated efficacy of non-invasive neuromodulation therapy targeting the median and radial nerves for reducing hand tremor. This current study evaluated efficacy and safety of the therapy over three months of repeated home use. Methods: This was a prospective, open-label, post-clearance, single-arm study with 263 patients enrolled across 26 sites. Patients were instructed to use the therapy twice daily for three months. Pre-specified co-primary endpoints were improvements on clinician-rated Tremor Research Group Essential Tremor Rating Assessment Scale (TETRAS) and patient-rated Bain & Findley Activities of Daily Living (BF-ADL) dominant hand scores. Other endpoints included improvement in the tremor power detected by an accelerometer on the therapeutic device, Clinical and Patient Global Impression scores (CGI-I, PGI-I), and Quality of Life in Essential Tremor (QUEST) survey. Results: 205 patients completed the study. The co-primary endpoints were met (p≪0.0001), with 62% (TETRAS) and 68% (BF-ADL) of \u27severe\u27 or \u27moderate\u27 patients improving to \u27mild\u27 or \u27slight\u27. Clinicians (CGI-I) reported improvement in 68% of patients, 60% (PGI-I) of patients reported improvement, and QUEST improved (p = 0.0019). Wrist-worn accelerometer recordings before and after 21,806 therapy sessions showed that 92% of patients improved, and 54% of patients experienced ≥50% improvement in tremor power. Device-related adverse events (e.g., wrist discomfort, skin irritation, pain) occurred in 18% of patients. No device-related serious adverse events were reported. Discussion: This study suggests that non-invasive neuromodulation therapy used repeatedly at home over three months results in safe and effective hand tremor reduction in many essential tremor patients

    Non-monotonic effects of GABAergic synaptic inputs on neuronal firing.

    No full text
    GABA is generally known as the principal inhibitory neurotransmitter in the nervous system, usually acting by hyperpolarizing membrane potential. However, GABAergic currents sometimes exhibit non-inhibitory effects, depending on the brain region, developmental stage or pathological condition. Here, we investigate the diverse effects of GABA on the firing rate of several single neuron models, using both analytical calculations and numerical simulations. We find that GABAergic synaptic conductance and output firing rate exhibit three qualitatively different regimes as a function of GABA reversal potential, EGABA: monotonically decreasing for sufficiently low EGABA (inhibitory), monotonically increasing for EGABA above firing threshold (excitatory); and a non-monotonic region for intermediate values of EGABA. In the non-monotonic regime, small GABA conductances have an excitatory effect while large GABA conductances show an inhibitory effect. We provide a phase diagram of different GABAergic effects as a function of GABA reversal potential and glutamate conductance. We find that noisy inputs increase the range of EGABA for which the non-monotonic effect can be observed. We also construct a micro-circuit model of striatum to explain observed effects of GABAergic fast spiking interneurons on spiny projection neurons, including non-monotonicity, as well as the heterogeneity of the effects. Our work provides a mechanistic explanation of paradoxical effects of GABAergic synaptic inputs, with implications for understanding the effects of GABA in neural computation and development

    An Improved BAC Transgenic Fluorescent Reporter Line for Sensitive and Specific Identification of Striatonigral Medium Spiny Neurons

    No full text
    The development of BAC transgenic mice expressing promoter-specific fluorescent reporter proteins has been a great asset for neuroscience by enabling detection of neuronal subsets in live tissue. For the study of basal ganglia physiology, reporters driven by type 1 and 2 dopamine receptors have been particularly useful for distinguishing the two classes of striatal projection neurons – striatonigral and striatopallidal. However, emerging evidence suggests that some of the transgenic reporter lines may have suboptimal features. The ideal transgenic reporter line should (1) express a reporter with high sensitivity and specificity for detecting the cellular subset of interest and that does not otherwise alter the biology of the cells in which it is expressed, and (2) involve a genetic manipulation that does not cause any additional genetic effects other than expression of the reporter. Here we introduce a new BAC transgenic reporter line, Drd1a-tdTomato line 6, with features that approximate these ideals, offering substantial benefits over existing lines. In this study, we investigate the integrity of dopamine-sensitive behaviors and test the sensitivity and specificity of tdTomato fluorescence for identifying striatonigral projection neurons in mice. Behaviorally, hemizygous Drd1a-tdTomato line 6 mice are similar to littermate controls; while hemizygous Drd2-EGFP mice are not. In characterizing the sensitivity and specificity of line 6 mice, we find that both are high. The results of this characterization indicate that line 6 Drd1a-tdTomato+/− mice offer a useful alternative approach to identify both striatonigral and striatopallidal neurons in a single transgenic line with a high degree of accuracy

    Nitric Oxide Modulates Synaptic Vesicle Docking/Fusion Reactions

    Get PDF
    AbstractNitric oxide (NO) stimulates calcium-independent neurotransmitter release from synaptosomes. NO-stimulated release was found to be inhibited by Botulinum neurotoxins that inactivate the core complex of synaptic proteins involved in the docking and fusion of synaptic vesicles. In experiments using recombinant proteins, NO donors increased formation of the VAMP/SNAP-25/syntaxin 1a core complex and inhibited the binding of n-sec1 to syntaxin 1a. The combined effects of these activities is predicted to promote vesicle docking/fusion. The sulfhydryl reagent NEM inhibited the binding of n-sec1 to syntaxin 1a, while β-ME could reverse the NO-enhanced association of VAMP/SNAP-25/syntaxin 1a. These data suggest that post-translational modification of sulfhydryl groups by a nitrogen monoxide (likely to be NO+) alters the synaptic protein interactions that regulate neurotransmitter release and synaptic plasticity
    corecore