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Despite many research studies, transcranial magnetic stimulation (TMS) is not

yet an FDA-approved clinical therapy for dystonia patients. This review

describes the four major challenges that have historically hindered the

clinical translation of TMS. The four challenges described are limited types

of clinical trial designs, limited evidence on objective behavioral measures,

variability in the TMS clinical response, and the extensive TMS parameters to

optimize for clinical therapy. Progress has been made to diversify the types of

clinical trial design available to clinical researchers, identify evidence-based

objective behavioral measures, and reduce the variability in TMS clinical

response. Future studies should identify objective behavioral measures for

other dystonia subtypes and expand the optimal TMS stimulation parameters

for clinical therapy. Our review highlights the key progress made to overcome

these barriers and gaps that remain for TMS to develop into a long-lasting

clinical therapy for dystonia patients.
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Introduction

TMS is a noninvasive brain stimulation technique currently FDA-approved for

treating depression (including anxiety symptoms), obsessive compulsive disorder,

migraine, and smoking addiction [1–3]. TMS has been studied as a potential clinical

therapy for dystonia since the early 1990s [4]. However, no TMS paradigm is currently

FDA-approved for clinical therapy in any subtype of dystonia. In this review, we discuss

the four historical challenges that have delayed the progress of TMS as a clinical therapy

for dystonia, the progress made in the last three decades to overcome these barriers, and

the work that remains for future dystonia researchers. The four challenges discussed are
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limited types of clinical trial designs, limited evidence on

objective behavioral measures, variability in the TMS clinical

response, and the vast TMS parameter space to optimize for

clinical therapy (Table 1).

Limited types of clinical trial designs

With a prevalence of 405 per million, dystonia is a rare brain

disorder [5, 6]. Traditional clinical trials that require large

samples to power a randomized and placebo-controlled design

adequately are not possible. As a result, rare disorders such as

dystonia have historically struggled to meet the bar for FDA

approval of clinical therapies. Indeed, deep brain stimulation

(DBS), a long-standing clinical therapy for dystonia, is not FDA-

approved [7]. Instead, DBS carries a humanitarian device

exemption to permit its application in patients with

generalized and cervical dystonia [7]. In the past few decades,

there has been a growing rejection of the “one-size-fits-all”

approach to clinical trial design. Instead, organizations such as

the rare disease network have proposed alternative clinical trial

designs, and policies such as the Orphan Drug Act have

successfully allowed rare disorders to receive FDA approval

for drugs [8]. Readers are referred to another source for a

comprehensive review of alternative clinical trial designs in

rare diseases [9]. Among these alternative designs, three

clinical trial designs may be particularly suited for testing

TMS effects in dystonia subtypes. Cross-over trial compares

the effects of two or more treatments by allocating each

participant to each treatment in a sequential but randomized

order [9]. This approach allows the comparison of multiple TMS

conditions while minimizing the cost and sample size in a

powered study. For example, a single arm cross-over study

design was previously employed to compare the behavioral

effects of three different TMS conditions in focal hand

dystonia [10]. To negate order effects, all six possible orders

of the three conditions were included. By allowing patients to

serve as their own comparison through a cross-over design,

sufficient biological data was collected to power the study

while minimizing sample size. An important drawback of a

cross-over study design is the potential for carryover effects

between the different conditions [9]. This issue can be

reduced by ensuring a sufficient washout period between each

TMS condition. If a washout period is unknown, data on TMS

effects can be collected at pre- and post-intervals for all TMS

conditions to adjust for the cumulative or additive effects of

multiple conditions over time.

An enriched enrollment, randomized withdrawal design was

previously used in a TMS study of dystonia patients [11]. The

research design has two phases: the first enrichment phase is an

open-label trial where all patients receive the active TMS

condition. TMS responders are identified and enrolled in the

second randomized withdrawal phase. In the second phase,

responders are randomly assigned to the active or sham TMS

intervention. Study analysis is only conducted using the second

phase of the study [9]. Given the variability in TMS response, this

design allows the enrichment of the study cohort with TMS

responders, thereby increasing the power of the study. An

inherent limitation of the enriched study design is that the

findings cannot be generalized to the dystonia patient

population as a whole but are limited to TMS responders of

the dystonia population being studied [9]. Nevertheless, the

enriched study design allows for a powered evaluation of the

efficacy of a TMS intervention in a rare disorder.

TABLE 1 Historical barriers to TMS clinical therapy.

Historical barriers Advances Gaps

Limitations in types of clinical trial
designs

-Alternative clinical trial designs

Limited evidence on objective behavioral
measures

-Use of wearable sensor or video-based measures to develop
objective measures

-Objective measures of other dystonia subtypes

-Systematic analyses of objective measures using a diagnostic
framework

Variability in TMS clinical response Technical:

-Use multimodal imaging to identify brain target

-Use electric field modeling to maximize and regularize TMS
dose delivery

Biological: -Identify dystonia subtypes that share common biological
pathways-Sham-TMS coil combined with electrical scalp

-Use of commercial gene panels to rule out other dystonia
subtypes

Vast TMS parameter range -Use TMS paradigms showing benefit in other neuropsychiatric
disorders

-Use Bayesian optimization methods to efficiently identify
novel TMS paradigms
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Response adaptive randomization design uses data analysis at

planned interim breaks throughout the study to adjust the study

design [9]. For example, an adaptive trial may change the

randomization scheme to favor the better-performing arm of

the TMS study based on the interim analysis. Response adaptive

trials, therefore, maximize the number of participants assigned to

the more effective TMS condition while minimizing overall study

recruitment. A major limitation of the study is that the imbalance

in treatment assignment may lead to unblinding for study

investigators and selection bias. To overcome this limitation, a

two-staged randomized and nonrandomized phase of the

response adaptive trial has been proposed [9].

In conclusion, the study design of a clinical trial is critical to

its success. Alternative clinical trial designs are important

advancements for clinical research studies in rare disorders

such as dystonia. Researchers should carefully consider the

diversity of clinical trial designs for rare disorders to ensure

that an optimal design is selected to successfully carry out a TMS

study in dystonia patients.

Limited evidence on objective behavioral
measures

In order to develop TMS as a clinical therapy for dystonia,

evidence-based objective behavioral measures are much needed.

Historically, patient-reported outcome measures were available

to assess response to clinical treatments [7]. However, these

measures are highly susceptible to placebo effects. As a result,

while patient-reported measures are essential to include in trials

to understand the clinical meaningfulness of study findings, they

present major limitations that make them less suitable as primary

outcomes in an intervention trial. In the last few decades,

extensive progress has been made in creating clinician-rated

scales to quantify the observed dystonic movements, such as

the Burke-Fahn-Marsden dystonia scale, writer’s cramp rating

scale, and Toronto Spasmodic Torticollis scale (TWSTR)

[12–14]. Unfortunately, these rating scales require specialized

practitioners and are susceptible to high inter-rater variability.

Furthermore, the data collected are ultimately categorical rather

than continuous, reducing the analytic power.

Using modern technology such as digital tablets, research

groups in neurological disorders are developing objective

behavioral assays to overcome the shortcomings of these types

of patient and clinician-rated categorical datasets (Table 2). For

example, research studies of adult focal dystonias such as writer’s

cramp, cervical dystonia, blepharospasm, and spasmodic

dysphonia increasingly use wearable sensors and video-based

quantification to capture dystonic movements [15–20]. These

digital behavioral measures are continuous data, thereby

improving the analytic power. Another advantage of these

digital measures is that most of these devices and software are

accessible commercially without extensive clinical or engineering

expertise needed. Although objective behavioral measures are

increasingly being used to study the effect of TMS in dystonia,

clear evidence on the diagnostic potential of these digital

measures is lacking. As a result, it remains unclear if these

objective measures can capture the behavioral response to

TMS intervention in dystonia patients [21, 22].

Systematic analyses are, therefore, needed to understand the

diagnostic potential of these objective behavioral measures.

Specifically, studies are needed to understand the sensitivity

and specificity of these objective measures to detect changes

in behavior, retest reliability, and the power needed to

differentiate behavioral signals from noise. Objective

behavioral measures that pass a systematic analysis should

then be correlated with the other two data types (patient-

reported outcome measures and clinician-rated measures) to

TABLE 2 Objective behavioral measures for dystonia subtypes.

Dystonia subtype Measured behavior Digital tool

Blepharospasm -Blinking frequency -Nanomembrane sensor and bioelectronic systemic [15]

-Eye closure duration

-Eye closure duration -Video of clinical exam

-Computer Expression Recognition Toolbox [16]

Cervical Dystonia -Neck posture -Video of clinical exam

-Computational Motor Objective Rater [17]

-Acceleration of neck movements -Wearable wireless bioelectronics [18]

Writer’s Cramp Dystonia -Analysis of handwriting features -Pressure sensitive pen, and tablet

-Kinematic software [19]

Adductor-type Spasmodic Dysphonia -Vocalization of sustained sounds -Cepstral analysis

-Machine learning algorithm [20]
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understand the clinical meaning of these objective behavioral

measures. Measures that pass these systematic diagnostic

evaluations should then be used as primary outcomes in TMS

interventional studies of dystonia patients.

For example, multiple prior TMS studies used kinematic

features of writing, such as pen pressure and writing velocity, to

quantify TMS effects in writer’s cramp dystonia [22–24].

However, the evidence for using these kinematic measures in

clinical research studies of dystonia patients was sparse. As a

result, prior to initiating a TMS study in focal hand dystonia, our

group systematically analyzed 23 kinematic writing measures,

including pen pressure and writing velocity. We demonstrated

that these previously used kinematic measures did not display the

diagnostic evidence (sensitivity, specificity, reliability) to serve as

a primary outcome in a clinical intervention study of focal hand

dystonia. Instead, we identified a novel behavioral measure (peak

accelerations) that could serve as a primary outcome in our TMS

study of focal hand dystonia [19]. Although identifying objective

behavioral outcome measures delayed the initiation of the

primary TMS study by a year, findings from this study were

critical to understanding the effects of TMS in focal hand

dystonia. Using an evidence-based, objective behavioral

measure allowed us to detect a medium-effect behavioral

response to TMS in our study [10]. Furthermore, the objective

behavioral measure also allowed us to understand the

relationship between motor symptoms in dystonia and brain

connections [25]. These insights will inform future TMS clinical

research studies in focal hand dystonia. More studies are needed

to identify evidence-based objective measures for use in clinical

research studies of other dystonia subtypes. One of the missions

of the Dystonia Coalition is to incorporate technologies such as a

video capture system to develop objective behavioral measures

for use in clinical research studies.

Variability in TMS clinical response

Technical variability
Another historical challenge to developing TMS as a clinical

therapy for dystonia has been the variability in clinical response.

Variability in clinical response may arise from both technical and

biological aspects. Technical variability can result from “one-

size-fits-all” approaches to brain targeting and a lack of tools to

individualize stimulation delivery [26]. Historically, identifying

brain targets for TMS delivery was performed using anatomic

landmarks on the scalp or structural MRI scans [26]. In recent

years, a new field has emerged, with researchers using

neuroimaging (fMRI, DTI, PET) and neurophysiology (EEG,

EMG) to improve the precision of brain targeting [2, 26, 27].

These techniques aim to deliver TMS to a precise brain region

relevant to the disease of interest and are customized to the

individual subject’s brain. The accurate delivery of the electric

field induced by TMS is also contingent on accounting for the

distance between the TMS coil and the brain target. The accurate

delivery of the electric field must therefore adjust for the effect of

the individual skull anatomy and different tissue conductivities

between the TMS coil and relevant brain target. To address this

challenge, electrical field modeling was developed to adjust coil

position and maximize the electric field induced by TMS in the

brain target of interest [28, 29]. Software pipelines such as TAP

(Targeting and Analysis Pipeline) have synthesized the electric

field modeling steps with identification of a brain target using

neuroimaging or neurophysiology tools to improve brain

targeting efficiency [30, 31]. These pipelines have the added

advantage of retrospectively providing analyses on the

accuracy of TMS delivery by calculating the predicted electric

field delivered to the brain target of interest based on the

individual’s resting motor threshold and coil deviations during

the TMS session [31]. A retrospective measure of the accuracy of

TMS delivery is a vital quality control measure in an

interventional clinical trial design of TMS. In sum, recent

advances in prospective brain target selection and electric field

modeling combined with retrospective TMS delivery analysis can

help to address the technical variability in TMS clinical response.

Biological variability
The variability in clinical response to TMS can also have

biological origins. One source of biological variability is the

placebo effect. Historically, prior studies in psychiatry have

reported that placebo responses to TMS can be as high as 25%

[2]. As a result, study subjects are now routinely blinded to TMS

treatment arms, using a sham TMS coil combined with electrical

scalp stimulation to mimic active TMS without stimulating the

brain directly [32]. Biological variability may also be due to an

incorrect diagnosis. Neurologists and study investigators,

therefore, must do a comprehensive workup to ensure that

another disease does not confound study participants. For

example, TMS has historically been studied in patients with

writer’s cramp and cervical dystonia. However, similar

dystonia symptoms can manifest in patients with Parkinson’s

disease. Monogenic forms of dystonia, such as DYT1, also show

variable penetrance, and silent carriers of this gene may manifest

in the adult age with writer’s cramp symptoms [33]. Ensuring that

dystonias are homogenous in etiology is, therefore, an important

quality control step for clinical trials. Since dystonia gene panels

are now commercially available and more affordable, studies

enrolling patients with specific dystonia subtypes can use these

options to ensure the study cohort has the same etiology onAxis II

of the dystonia classification system. Alternatively, there is a

growing understanding that multiple genetic forms of dystonia

converge in shared biological pathways [34]. Updating the

dystonia classification system to group dystonia syndromes by

shared biological pathways may expand future studies to allow all

dystonia patients who share a common biological pathway to be

included in a clinical trial, thus opening the studies to a larger

subgroup of dystonia patients.
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Wide TMS parameter range

The fourth historical barrier to developing TMS as a clinical

therapy has been the wide range of possible stimulation

parameters to test. For example, in repetitive TMS (rTMS),

researchers need to decide not only on the brain target and

frequency of stimulation but also the intensity, the number of

pulse trains, intertrain interval, the number of sessions and their

frequency, among other parameters [35–37]. As a result, many

clinical trials in dystonia have used the same stimulation

parameters shown to transiently benefit patients in previous

studies. For example, 1 Hz rTMS has been extensively studied

in patients with focal hand dystonia [38]. While this approach is

logical and builds on prior work in the field, it can also deter new

discoveries of stimulation parameters. Keeping an eye on

successful TMS paradigms for other diseases, such as

intermittent theta burst stimulation for treatment-resistant

depression, may inspire the next iteration of TMS parameters

for dystonia therapy [39, 40]. Understanding the effects of

different TMS parameters on the same brain region of

interest, regardless of the targeted disease, could identify new

TMS paradigms for dystonia. The daunting task of parameter

selection is further complicated by brain state dependence: for

example, whether to deliver TMS at rest or during a dystonia-

evoking task [41]. Prior neuroimaging studies of dystonia

patients report abnormalities in the brain networks during

both rest and performance of the dystonic motor task

[42–44]. Understanding how these abnormalities link with the

manifestation of dystonic behavior is the next step in

understanding the ideal brain state for delivering

neuromodulation therapy. Recent work by our group

evaluates these relationships [25]. More studies are needed to

understand the relationship between brain abnormalities and

dystonic behavior to generate further insight into the ideal brain

state to deliver neuromodulation therapy.

As knowledge of TMS effects on dystonia subtypes is still

growing, it may be the case that different dystonia subtypes may

have distinct brain targets and TMS parameters. For example, a

prior TMS study targeting the cerebellum in writer’s cramp failed

to show amotor response, while another TMS study targeting the

cerebellum in cervical dystonia showed improvement in motor

symptoms [45, 46]. Similarly, the TMS stimulation parameters

for different dystonia subtypes may be distinct. For example,

intermittent theta burst stimulation previously failed to show a

behavioral response in patients with focal hand dystonia but

showed behavioral improvement in cervical dystonia [45, 47]. As

knowledge of dystonia pathophysiology advances, it is possible

that dystonia subtypes with different biological pathways may

show distinct brain targets and TMS parameters for an optimal

behavioral response.

Considering the continued challenge of identifying the

optimal TMS parameters for dystonia, we might envision a

roadmap to rationally select TMS stimulation parameters for

dystonia. First, the critical brain network in dystonia

pathophysiology, such as the motor network during a relevant

brain state, should be identified. It is preferable to select a brain

network associated with a behavioral abnormality captured on an

objective behavioral measure such as motor movements. This

critical brain network would serve as the TMS target. Advanced

neuroimaging or neurophysiology analyses at the individual and

group levels of the dystonia study cohort should be used to

identify a superficial cortical region associated with the abnormal

brain network. This node would be the access point for TMS

delivery to the targeted brain network since TMS directly

activates the superficial cortical regions only [48]. Then, the

TMS stimulation parameters for modifying the brain network of

interest must be determined. To understand the effects of

different TMS parameters on dystonia, it is important to

report TMS parameters that show a clinical effect and those

that do not. For example, a novel stimulation approach called

accelerated TMS consists of multiple daily 10-minute TMS

sessions interspersed with 50-minute intervals of rest [39, 40].

This accelerated TMS has recently shown high remission rates

and secured FDA clearance in refractory depression [39].

However, rest intervals of less than 50 min have not shown

similar behavioral improvement in depression patients [39].

These negative findings led the authors to conclude that the

minimum of a 50-minute rest interval may be important for the

process of synaptic strengthening and, ultimately, TMS’s

cumulative therapeutic effects. Reporting both positive and

negative clinical responses to new TMS parameters is,

therefore, highly informative to our understanding of the

effects of TMS parameters on brain physiology.

Computational tools such as closed-loop Bayesian optimization

may also reduce the TMS selection parameters to test in future

research studies [49]. Although our knowledge of optimal TMS

parameter selection remains underdeveloped, maximizing the

existing knowledge across TMS paradigms and diseases while

incorporating novel computational tools can further narrow

down effective parameters to consider for developing TMS as a

clinical therapy in dystonia.

Conclusion

Over the last 30 years, significant progress has been made to

diversify clinical trial designs for rare disorders, develop novel

objective behavioral outcome measures to capture dystonic

movements, improve the technical delivery of TMS, and

reduce the variability in the biological response to TMS.

Future studies should identify objective behavioral measures

for other dystonia subtypes, test the effect of different TMS

stimulation parameters on behavioral symptoms of dystonia.

Given the extensive TMS parameters to develop, testing TMS

paradigms used in other brain disorders in conjunction with

computational modeling can be helpful. The goal is to identify

Dystonia Published by Frontiers05

Mulcahey et al. 10.3389/dyst.2023.11660

https://doi.org/10.3389/dyst.2023.11660


the optimal TMS parameters that provide long lasting clinical

benefits in different dystonia subtypes. Our review highlights the

key progress made to overcome some of the historical barriers

and the remaining gaps in the field that should be the focus of

future research to advance TMS as a clinical therapy for dystonia

patients.
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