5 research outputs found

    Natural selection on plant resistance to herbivores in the native and introduced range

    Get PDF
    . When plants are introduced into new regions, the absence of their co-evolved natural enemies can result in lower levels of attack. As a consequence of this reduction in enemy pressure, plant performance may increase and selection for resistance to enemies may decrease. In the present study, we compared leaf damage, plant size and leaf trichome density, as well as the direction and magnitude of selection on resistance and plant size between non-native (Spain) and native (Mexico) populations of Datura stramonium. This species was introduced to Spain about five centuries ago and constitutes an ideal system to test four predictions of the enemy release hypothesis. Compared with native populations, we expected Spanish populations of D. stramonium to have (i) lower levels of foliar damage; (ii) larger plant size; (iii) lower leaf trichome density that is unrelated to foliar damage by herbivores; and (iv) weak or no selection on resistance to herbivores but strong selection on plant size. Our results showed that, on average, plants from non-native populations were significantly less damaged by herbivores, were less pubescent and were larger than those from native populations. We also detected different selection regimes on resistance and plant size between the non-native and native ranges. Positive selection on plant size was detected in both ranges (though it was higher in the non-native area), but consistent positive selection on relative resistance was detected only in the native range. Overall, we suggest that changes in selection pressure on resistance and plant size in D. stramonium in Spain are a consequence of ‘release from natural enemies’

    Natural selection on plant resistance to herbivores in the native and introduced range

    Get PDF
    Citation: Valverde PL, Arroyo J, NĂș ñ ez-FarfĂĄ n J, Castillo G, Calahorra A, PĂ©rez-Barrales R, Tapia-LĂł pez R. 2015. Natural selection on plant resistance to herbivores in the native and introduced range. AoB PLANTS 7: plv090; doi:10.1093/aobpla/plv090 Abstract. When plants are introduced into new regions, the absence of their co-evolved natural enemies can result in lower levels of attack. As a consequence of this reduction in enemy pressure, plant performance may increase and selection for resistance to enemies may decrease. In the present study, we compared leaf damage, plant size and leaf trichome density, as well as the direction and magnitude of selection on resistance and plant size between non-native (Spain) and native (Mexico) populations of Datura stramonium. This species was introduced to Spain about five centuries ago and constitutes an ideal system to test four predictions of the enemy release hypothesis. Compared with native populations, we expected Spanish populations of D. stramonium to have (i) lower levels of foliar damage; (ii) larger plant size; (iii) lower leaf trichome density that is unrelated to foliar damage by herbivores; and (iv) weak or no selection on resistance to herbivores but strong selection on plant size. Our results showed that, on average, plants from non-native populations were significantly less damaged by herbivores, were less pubescent and were larger than those from native populations. We also detected different selection regimes on resistance and plant size between the non-native and native ranges. Positive selection on plant size was detected in both ranges (though it was higher in the non-native area), but consistent positive selection on relative resistance was detected only in the native range. Overall, we suggest that changes in selection pressure on resistance and plant size in D. stramonium in Spain are a consequence of 'release from natural enemies'

    tropane alkaloid concentration of native and non-native populations of Datura stramonium

    No full text
    Data include leaf concentration of Atropine and Scopolamine in plants of Datura stramonium. Eight and fourteen populations from Mexico and Spain, respectively, are included. Also, seed production per plant is provided

    Selection on tropane alkaloids in native and non‐native populations of Datura stramonium

    No full text
    heories of plant invasion based on enemy release in a new range assume that selection exerted by specialist herbivores on defence traits should be reduced, absent, or even selected against in the new environment. Here, we measured phenotypic selection on atropine and scopolamine concentration of Datura stramonium in eight native (Mexico) and 14 non‐native (Spain) populations. Native populations produced between 20 and 40 times more alkaloid than non‐native populations (atropine: 2.0171 vs. 0.0458 mg/g; scopolamine: 1.004 vs. 0.0488 mg/g, respectively). Selection on alkaloids was negative for atropine and positive for scopolamine concentration in both ranges. However, the effect sizes of selection gradients were only significant in the native range. Our results support the assumption that the reduction of plant defence in the absence of the plant's natural enemies in invasive ranges is driven by natural selection
    corecore