5 research outputs found

    Selecting suitable reference genes for qPCR normalization : A comprehensive analysis in MCF-7 breast cancer cell line

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: MCF-7 breast cancer cell line is undoubtedly amongst the most extensively studied patient-derived research models, providing pivotal results that have over the decades translated to constantly improving patient care. Many research groups, have previously identified suitable reference genes for qPCR normalization in MCF-7 cell line. However, over the course of identification of suitable reference genes, a comparative analysis comprising these genes together in a single study has not been reported. Furthermore, the expression dynamics of these reference genes within sub-clones cultured over multiple passages (p) has attracted limited attention from research groups. Therefore, we investigated the expression dynamics of 12 previously suggested reference genes within two sub-clones (culture A1 and A2) cultured identically over multiple passages. Additionally, the effect of nutrient stress on reference gene expression was examined to postulate an evidence-based recommendation of the least variable reference genes that could be employed in future gene expression studies. Results: The analysis revealed the presence of differential reference gene expression within the sub-clones of MCF-7. In culture A1, GAPDH-CCSER2 were identified as the least variable reference genes while for culture A2, GAPDH-RNA28S were identified. However, upon validation using genes of interest, both these pairs were found to be unsuitable control pairs. Normalization of AURKA and KRT19 with triplet pair GAPDH-CCSER2-PCBP1 yielded successful results. The triplet also proved its capability to handle variations arising from nutrient stress. Conclusions: The variance in expression behavior amongst sub-clones highlights the potential need for exercising caution while selecting reference genes for MCF-7. GAPDH-CCSER2-PCBP1 triplet offers a reliable alternative to otherwise traditionally used internal controls for optimizing intra- and inter-assay gene expression differences. Furthermore, we suggest avoiding the use of ACTB, GAPDH and PGK1 as single internal controls.publishersversionPeer reviewe

    Primary culture of avian embryonic heart forming region cells to study the regulation of vertebrate early heart morphogenesis by vitamin A

    Get PDF
    Copyright: Copyright 2014 Elsevier B.V., All rights reserved.Background: Important knowledge about the role of vitamin A in vertebrate heart development has been obtained using the vitamin A-deficient avian in ovo model which enables the in vivo examination of very early stages of vertebrate heart morphogenesis. These studies have revealed the critical role of the vitamin A-active form, retinoic acid (RA) in the regulation of several developmental genes, including the important growth regulatory factor, transforming growth factor-beta2 (TGFβ2), involved in early events of heart morphogenesis. However, this in ovo model is not readily available for elucidating details of molecular mechanisms determining RA activity, thus limiting further examination of RA-regulated early heart morphogenesis. In order to obtain insights into RA-regulated gene expression during these early events, a reliable in vitro model is needed. Here we describe a cell culture that closely reproduces the in ovo observed regulatory effects of RA on TGFβ2 and on several developmental genes linked to TGFβ signaling during heart morphogenesis. Results: We have developed an avian heart forming region (HFR) cell based in vitro model that displays the characteristics associated with vertebrate early heart morphogenesis, i.e. the expression of Nkx2.5 and GATA4, the cardiogenesis genes, of vascular endothelial growth factor (VEGF-A), the vasculogenesis gene and of fibronectin (FN1), an essential component in building the heart, and the expression of the multifunctional genes TGFβ2 and neogenin (NEO). Importantly, we established that the HFR cell culture is a valid model to study RA-regulated molecular events during heart morphogenesis and that the expression of TGFβ2 as well as the expression of several TGFβ2-linked developmental genes is regulated by RA. Conclusions: Our findings reported here offer a biologically relevant experimental in vitro system for the elucidation of RA-regulated expression of TGFβ2 and other genes involved in vertebrate early cardiovascular morphogenesis.publishersversionPeer reviewe

    An effect of culture media on epithelial differentiation markers in breast cancer cell lines MCF7, MDA-MB-436 and SkBr3

    Get PDF
    Funding Information: Acknowledgments: This research was supported by the Latvian National Research Program “Biomedicine for Public Health (BIOMEDICINE)”, project No. 5.5 “Personalized cancer diagnostics and prediction of therapy efficacy”. Publisher Copyright: © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.Background and objectives: Cell culture is one of the mainstays in the research of breast cancer biology, although the extent to which this approach allows to preserve the original characteristics of originating tumor and implications of cell culture findings to real life situations have been widely debated in the literature. The aim of this study was to determine the role of three cell culture media on transcriptional expression of breast cancer markers in three breast cancer reference cell lines (MCF7, SkBr3 and MDA-MB-436). Materials and methods: Cell lines were conditioned in three studied media (all containing 5% fetal bovine serum (FBS) + hormones/growth factors; different composition of basal media) for four passages. Population growth was characterized by cumulative population doubling levels, average generation time, cell yield and viability at the fourth passage. Transcriptional expression of breast cancer differentiation markers and regulatory transcriptional programs was measured by qPCR. Results: Differences in the composition of growth media significantly influenced the growth of studied cell lines and the expression of mammary lineage governing transcriptional programs and luminal/basal markers. Effects of media on transcriptional expression were more pronounced in luminal cell lines (MCF7, SkBr3), than in the basal cell line (MDA-MB-436). Changes in growth media in terms of supplementation and basal medium delayed growth of cells, but improved cell yields. Conclusions: The expression of breast cancer cell differentiation phenotypic markers depends on the composition of cell growth medium, therefore cell culture as a tool in phenotypic studies should be used considering this effect. The findings of such studies should always be interpreted with caution. The formulation of cell growth media has greater effect on the expression of phenotypic markers in luminal, rather than basal cell lines. Media containing mitogens and higher vitamin content improved efficacy of cell culture in terms of cell yields, although greatly increased growth times.publishersversionPeer reviewe
    corecore