16 research outputs found

    Experimental Study of Ultra-Large Jacket Offshore Wind Turbine under Different Operational States Based on Joint Aero-Hydro-Structural Elastic Similarities

    Get PDF
    The jacket substructure is generalized for offshore wind farms in the southeastern offshore regions of China. The dynamic characteristics and coupling mechanisms of jacket offshore wind turbines (OWTs) have been extensively investigated using numerical simulation tools. However, limited dynamic model tests have been designed and performed for such types of OWTs. Therefore, the coupling mechanisms of jacket OWTs that are determined using numerical methods require further validation based on experimental tests. Accordingly, an integrated scaled jacket OWT physical test model is designed in this study. It consists of a scaled rotor nacelle assembly (RNA) and support structure model. For the scaled RNA model, a redesigned blade model is adopted to ensure the similarity of the aerodynamic thrust loads without modifying the scaled test winds. Auxiliary scaled drivetrain and blade pitch control system models are designed to simulate the operational states of a practical OWT. The scaled model of the OWT support structure is fabricated on the basis of the joint hydro-structural elastic similarities. A sensor arrangement involving a three-component load cell and acceleration sensors is used to record the OWT thrust loads and model motions, respectively. Then, dynamic model tests under typical scaled wind fields are implemented. Furthermore, the coupling mechanisms of the OWT model under various test winds are investigated using the wavelet packet method, and the influences of inflow winds, operational states, and mechanical strategies are introduced

    Phylogenetic and molecular characterization of coxsackievirus A24 variant isolates from a 2010 acute hemorrhagic conjunctivitis outbreak in Guangdong, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute hemorrhagic conjunctivitis is a common disease in China. As a notifiable disease, cases are registered by ophthalmologists on the AHC surveillance system. An AHC outbreak caused by CA24v was observed in Guangdong Province in 2007 by the National Disease Supervision Information Management System. Three years later, a larger outbreak occurred in Guangdong during the August-October period (2010). To characterize the outbreak and compare the genetic diversity of CA24v, which was determined to be the cause of the outbreak, the epidemiology and the molecular characterization of CA24v were analyzed in this study.</p> <p>Results</p> <p>A total of 69,635 cases were reported in the outbreak. 73.5% of index cases originated from students, children in kindergarten and factory workers, with the ≦ 9 age group at the highest risk. The male to female ratio was 1.84:1 among 0-19 years. 56 conjunctival swabs were collected to identify the causative agent from five cities with the AHC outbreak. 30 virus strains were isolated, and two of the genomes had the highest identity values (95.8%) with CA24v genomes. Four CA24v genotypes were identified by phylogenetic analysis for the VP1 and 3C regions. CA24v which caused the outbreak belonged to genotype IV. Furthermore, full nucleotide sequences for four representative isolates in 2010 and 2007 were determined and compared. 20 aa mutations, two nt insertions and one nt deletion were observed in the open reading frame, with 5'- and 3'- UTR respectively between them.</p> <p>Conclusions</p> <p>CA24v was determined to be the pathogen causing the outbreak and belongs to genotype IV. VP1 is more informative than 3C<sup>Pro </sup>for describing molecular epidemiology and we hypothesize that accumulative mutations may have promoted the outbreak.</p

    Experimental Investigation of MgAl-NO2 and MgAl-CO3 LDHs on Durability of Mortar and Concrete

    No full text
    Two kinds of layered double hydroxides (LDHs), MgAl-NO2 (N-LDH) and MgAl-CO3 (C-LDH), were incorporated to study the durability of mortar and concrete. The LDH contents of mortar were 1%, 2%, and 4% by mass and the LDH contents of concrete were 0.5%, 1%, 2%, 4%, respectively. The effect of LDHs on sulfate resistance of mortar was studied through dry-wetting cycle test, compressive strength test, and flexural strength test. In addition, the effects of LDHs on pore structure, chloride resistance, carbonation resistance, shrinkage, and creep of concrete were investigated by SEM, mercury injection test, XRD, chloride ion diffusion coefficient test, chloride salt corrosion depth test, carbonation depth test, shrinkage test, and creep test. The results showed that LDHs can improve the ability of resisting ion corrosion, carbonization, shrinkage, and creep, reduce the pore content, and optimize the pore structure of mortar and concrete to some extent. Moreover, 4% LDHs had a better effect on improving the durability of mortar and concrete compared to 0.5%, 1%, and 2% LDHs, and the effect of C-LDH was better than N-LDH

    Numerical Investigation on Vortex-Induced Vibrations of Two Cylinders with Unequal Diameters

    No full text
    A series of numerical simulations of two-degree-of-freedom vortex-induced vibration of two coupled cylinders with unequal diameters are performed at the Reynolds number of 20,000. The effects of incident angle, spacing ratio, and diameter ratio on the VIV responses for two cylinders are investigated. It is shown that the lock-in range of the large cylinder is significantly widened and the maximum vibration amplitude decreases as a result of the existence of small cylinder. The mean drag coefficients and root mean square force coefficients of the large cylinder are not varied significantly with the incident angle and diameter ratio, but the force coefficients of the small cylinder vary considerably under different configurations. For the configuration of &alpha; = 0&deg;, d/D = 0.05 and G/D = 0.05, the variations in vibration amplitude and frequency ratio are similar to those of the isolated cylinder. Different vortex shedding modes such as 2S mode, P+S mode, and 2P mode are observed for two coupled cylinders at different reduced velocities for different configurations

    CmNAC73 Mediates the Formation of Green Color in Chrysanthemum Flowers by Directly Activating the Expression of Chlorophyll Biosynthesis Genes HEMA1 and CRD1

    No full text
    Chrysanthemum is one of the most beautiful and popular flowers in the world, and the flower color is an important ornamental trait of chrysanthemum. Compared with other flower colors, green flowers are relatively rare. The formation of green flower color is attributed to the accumulation of chlorophyll; however, the regulatory mechanism of chlorophyll metabolism in chrysanthemum with green flowers remains largely unknown. In this study, we performed Illumina RNA sequencing on three chrysanthemum materials, Chrysanthemum vestitum and Chrysanthemum morifolium cultivars ‘Chunxiao’ and ‘Green anna’, which produce white, light green and dark green flowers, respectively. Based on the results of comparative transcriptome analysis, a gene encoding a novel NAC family transcription factor, CmNAC73, was found to be highly correlated to chlorophyll accumulation in the outer whorl of ray florets in chrysanthemum. The results of transient overexpression in chrysanthemum leaves showed that CmNAC73 acts as a positive regulator of chlorophyll biosynthesis. Furthermore, transactivation and yeast one-hybrid assays indicated that CmNAC73 directly binds to the promoters of chlorophyll synthesis-related genes HEMA1 and CRD1. Thus, this study uncovers the transcriptional regulation of chlorophyll synthesis-related genes HEMA1 and CRD1 by CmNAC73 and provides new insights into the development of green flower color in chrysanthemum and chlorophyll metabolism in plants

    Energy harnessing of multiple semi-active flapping ellipses in V-shape formation

    No full text
    Two-dimensional numerical simulations based on an immersed boundary method are performed for the two-foil system with varying spacings, and a staggered arrangement with a spacing normalized by chord length (X d / D, Y d / D) = (2.0, 2.5) is found to be the most favorable for energy harnessing with the efficiency enhancement of nearly 40% for the downstream foil. By scrutinizing the mean flow characteristics and the instantaneous wake dynamics, it is revealed that convective flow acceleration and vortex impingement in synchronized timing with foil motion are the two primary mechanisms that contribute to significant efficiency improvement. Based on the staggered arrangement for the two-foil system, a V-shape formation is further proposed for the multiple-foil system and verified with the highest efficiency of energy harnessing up to nearly twice that of a single foil.Published versionThe authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (Grant Nos. 42076210, 52122110, 52101322, and 11772193)

    Multiple functions of reversine on the biological characteristics of sheep fibroblasts

    No full text
    Abstract Previous reports have demonstrated that Reversine can reverse differentiation of lineage-committed cells to mesenchymal stem cells and suppress tumors growth. However, the molecular mechanisms of antitumor activity and promoting cellular dedifferentiation for reversine have not yet been clearly elucidated. In the present study, it was demonstrated that reversine of 5 μM could induce multinucleated cells through cytokinesis failure rather than just arrested in G2 or M phase. Moreover, reversine reversed the differentiation of sheep fibroblasts into MSC-like style, and notably increased the expression of pluripotent marker genes Oct4 and MSCs-related surface antigens. The fibroblasts treated with reversine could transdifferentiate into all three germ layers cells in vitro. Most importantly, the induced β-like cells and hepatocytes had similar metabolic functions with normal cells in vivo. In addition, reversine promoted fibroblasts autophagy, ROS accumulation, mitochondrial dysfunction and cell apoptosis via the mitochondria mediated intrinsic pathway. The results of high-throughput RNA sequencing showed that most differentially expressed genes (DEGs) involved in Mismatch repair, Nucleotide excision repair and Base excision repair were significantly up-regulated in reversine treated fibroblasts, which means that high concentration of reversine will cause DNA damage and activate the DNA repair mechanism. In summary, reversine can increase the plasticity of sheep fibroblasts and suppress cell growth via the mitochondria mediated intrinsic pathway

    Light and Strong Hierarchical Porous SiC Foam for Efficient Electromagnetic Interference Shielding and Thermal Insulation at Elevated Temperatures

    No full text
    A novel light but strong SiC foam with hierarchical porous architecture was fabricated by using dough as raw material via carbonization followed by carbothermal reduction with silicon source. A significant synergistic effect is achieved by embedding meso- and nanopores in a microsized porous skeleton, which endows the SiC foam with high-performance electromagnetic interference (EMI) shielding, thermal insulation, and mechanical properties. The microsized skeleton withstands high stress. The meso- and nanosized pores enhance multiple reflection of the incident electromagnetic waves and elongate the path of heat transfer. For the hierarchical porous SiC foam with 72.8% porosity, EMI shielding can be higher than 20 dB, and specific EMI effectiveness exceeds 24.8 dB·cm<sup>3</sup>·g<sup>–1</sup> at a frequency of 11 GHz at 25–600 °C, which is 3 times higher than that of dense SiC ceramic. The thermal conductivity reaches as low as 0.02 W·m<sup>–1</sup>·K<sup>–1</sup>, which is comparable to that of aerogel. The compressive strength is as high as 9.8 MPa. Given the chemical and high-temperature stability of SiC, the fabricated SiC foam is a promising candidate for modern aircraft and automobile applications
    corecore