38 research outputs found

    Theoretical interpretation of GRB 011121

    Full text link
    GRB011121 is analyzed as a prototype to understand the ``flares'' recently observed by Swift in the afterglow of many GRB sources. Detailed theoretical computation of the GRB011121 light curves in selected energy bands are presented and compared and contrasted with observational BeppoSAX data.Comment: 2 pages, 1 figure, to appear in the proceedings of "Swift and GRBs", Venice, 2006, Il Nuovo Cimento, in pres

    GRB970228 as a prototype for short GRBs with afterglow

    Full text link
    GRB970228 is analyzed as a prototype to understand the relative role of short GRBs and their associated afterglows, recently observed by Swift and HETE-II. Detailed theoretical computation of the GRB970228 light curves in selected energy bands are presented and compared with observational BeppoSAX data.Comment: 2 pages, 1 figure, to appear in the proceedings of "Swift and GRBs", Venice, 2006, Il Nuovo Cimento, in pres

    Theoretical interpretation of GRB060124: preliminary results

    Full text link
    We show the preliminary results of the application of our "fireshell" model to GRB060124. This source is very peculiar because it is the first event for which both the prompt and the afterglow emission were observed simultaneously by the three Swift instruments: BAT (15-350 keV), XRT (0.2-10 keV) and UVOT (170-650 nm), due to the presence of a precursor ~ 570 s before the main burst. We analyze GRB060124 within our "canonical" GRB scenario, identifying the precursor with the P-GRB and the prompt emission with the afterglow peak emission. In this way we reproduce correctly the energetics of both these two components. We reproduce also the observed time delay between the precursor (P-GRB) and the main burst. The effect of such a time delay in our model will be discussed.Comment: 6 pages, 2 figures, to appear on the Proceedings of the Eleventh Marcel Grossmann Meeting, Berlin (Germany), July 200

    The Blackholic energy and the canonical Gamma-Ray Burst

    Full text link
    We outline the main results of our GRB model, based on the three interpretation paradigms we proposed in July 2001, comparing and contrasting them with the ones in the current literature. Thanks to the observations by Swift and by VLT, this analysis points to a "canonical GRB" originating from markedly different astrophysical scenarios. The communality is that they are all emitted in the formation of a black hole with small or null angular momentum. The following sequence appears to be canonical: the vacuum polarization process creating an optically thick self accelerating electron-positron plasma; the engulfment of baryonic mass during the plasma expansion; the adiabatic expansion of the optically thick "fireshell" up to the transparency; the interaction of the remaining accelerated baryons with the interstellar medium (ISM). This leads to the canonical GRB composed of a proper GRB (P-GRB), emitted at the moment of transparency, followed by an extended afterglow. The parameters are the plasma total energy, the fireshell baryon loading and the ISM filamentary distribution around the source. In the limit of no baryon loading the total energy is radiated in the P-GRB. In this limit, the canonical GRBs explain as well the short GRBs.Comment: 163 pages, 89 figures, to appear on the "Proceedings of the XIIth Brazilian School of Cosmology and Gravitation", M. Novello, S.E. Perez-Bergliaffa (editors), AIP, in pres

    Short and canonical GRBs

    Full text link
    Within the "fireshell" model for the Gamma-Ray Bursts (GRBs) we define a "canonical GRB" light curve with two sharply different components: the Proper-GRB (P-GRB), emitted when the optically thick fireshell of electron-positron plasma originating the phenomenon reaches transparency, and the afterglow, emitted due to the collision between the remaining optically thin fireshell and the CircumBurst Medium (CBM). We outline our "canonical GRB" scenario, with a special emphasis on the discrimination between "genuine" and "fake" short GRBs.Comment: 4 pages, 3 figures, in the Proceedings of the "Gamma Ray Bursts 2007" meeting, November 5-9, 2007, Santa Fe, New Mexico, US

    Theoretical interpretation of "long" and "short" GRBs

    Full text link
    Within the "fireshell" model we define a "canonical GRB" light curve with two sharply different components: the Proper-GRB (P-GRB), emitted when the optically thick fireshell of electron-positron plasma originating the phenomenon reaches transparency, and the afterglow, emitted due to the collision between the remaining optically thin fireshell and the CircumBurst Medium (CBM). We here present the consequences of such a scenario on the theoretical interpretation of the nature of "long" and "short" GRBs.Comment: 3 pages, 1 figure, to appear on the Proceedings of the Eleventh Marcel Grossmann Meeting, Berlin (Germany), July 200

    The Blackholic energy and the canonical Gamma-Ray Burst IV: the "long", "genuine short" and "fake - disguised short" GRBs

    Full text link
    (Shortened) [...] After recalling the basic features of the "fireshell model", we emphasize the following novel results: 1) the interpretation of the X-ray flares in GRB afterglows as due to the interaction of the optically thin fireshell with isolated clouds in the CircumBurst Medium (CBM); 2) an interpretation as "fake - disguised" short GRBs of the GRBs belonging to the class identified by Norris & Bonnell [...] consistent with an origin from the final coalescence of a binary system in the halo of their host galaxies with particularly low CBM density [...]; 3) the first attempt to study a genuine short GRB with the analysis of GRB 050509B, that reveals indeed still an open question; 4) the interpretation of the GRB-SN association in the case of GRB 060218 via the "induced gravitational collapse" process; 5) a first attempt to understand the nature of the "Amati relation", a phenomenological correlation between the isotropic-equivalent radiated energy of the prompt emission E_{iso} with the cosmological rest-frame \nu F_{\nu} spectrum peak energy E_{p,i}. In addition, recent progress on the thermalization of the electron-positron plasma close to their formation phase, as well as the structure of the electrodynamics of Kerr-Newman Black Holes are presented. An outlook for possible explanation of high-energy phenomena in GRBs to be expected from the AGILE and the Fermi satellites are discussed. As an example of high energy process, the work by Enrico Fermi dealing with ultrarelativistic collisions is examined. It is clear that all the GRB physics points to the existence of overcritical electrodynamical fields. In this sense we present some progresses on a unified approach to heavy nuclei and neutron stars cores, which leads to the existence of overcritical fields under the neutron star crust.Comment: 68 pages, 50 figures, in the Proceedings of the XIII Brazilian School on Cosmology and Gravitation, M. Novello, S.E. Perez-Bergliaffa, editor

    The canonical Gamma-Ray Bursts and their "precursors"

    Full text link
    The fireshell model for Gamma-Ray Bursts (GRBs) naturally leads to a canonical GRB composed of a proper-GRB (P-GRB) and an afterglow. P-GRBs, introduced by us in 2001, are sometimes considered "precursors" of the main GRB event in the current literature. We show in this paper how the fireshell model leads to the understanding of the structure of GRBs, with precise estimates of the time sequence and intensities of the P-GRB and the of the afterglow. It leads as well to a natural classification of the canonical GRBs which overcomes the traditional one in short and long GRBs.Comment: 4 pages, 3 figures, Proceedings of the 2008 Nanjing GRB conferenc
    corecore