36 research outputs found

    Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial

    Get PDF

    Narcolepsy and adjuvanted pandemic influenza A (H1N1) 2009 vaccines – Multi-country assessment

    Get PDF
    Background: In 2010, a safety signal was detected for narcolepsy following vaccination with Pandemrix, an AS03-adjuvanted monovalent pandemic H1N1 influenza (pH1N1) vaccine. To further assess a possible association and inform policy on future use of adjuvants, we conducted a multi-country study of narcolepsy and adjuvanted pH1N1 vaccines. Methods: We used electronic health databases to conduct a dynamic retrospective cohort study to assess narcolepsy incidence rates (IR) before and during pH1N1 virus circulation, and after pH1N1 vaccination campaigns in Canada, Denmark, Spain, Sweden, Taiwan, the Netherlands, and the United Kingdom. Using a case-control study design, we evaluated the risk of narcolepsy following AS03- and MF59-adjuvanted pH1N1 vaccines in Argentina, Canada, Spain, Switzerland, Taiwan, and the Netherlands. In the Netherlands, we also conducted a case-coverage study in children born between 2004 and 2009. Results: No changes in narcolepsy IRs were observed in any periods in single study sites except Sweden and Taiwan; in Taiwan incidence increased after wild-type pH1N1 virus circulation and in Sweden (a previously identified signaling country), incidence increased after the start of pH1N1 vaccination. No association was observed for Arepanrix-AS03 or Focetria-MF59 adjuvanted pH1N1 vaccines and narcolepsy in children or adults in the case-control study nor for children born between 2004 and 2009 in the Netherlands case-coverage study for Pandemrix-AS03. Conclusions: Other than elevated narcolepsy IRs in the period after vaccination campaigns in Sweden, we did not find an association between AS03- or MF59-adjuvanted pH1N1 vaccines and narcolepsy in children or adults in the sites studied, although power to evaluate the AS03-adjuvanted Pandemrix brand vaccine was limited in our study

    Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial

    Get PDF
    Background Some high-income countries have deployed fourth doses of COVID-19 vaccines, but the clinical need, effectiveness, timing, and dose of a fourth dose remain uncertain. We aimed to investigate the safety, reactogenicity, and immunogenicity of fourth-dose boosters against COVID-19.Methods The COV-BOOST trial is a multicentre, blinded, phase 2, randomised controlled trial of seven COVID-19 vaccines given as third-dose boosters at 18 sites in the UK. This sub-study enrolled participants who had received BNT162b2 (Pfizer-BioNTech) as their third dose in COV-BOOST and randomly assigned them (1:1) to receive a fourth dose of either BNT162b2 (30 µg in 0·30 mL; full dose) or mRNA-1273 (Moderna; 50 µg in 0·25 mL; half dose) via intramuscular injection into the upper arm. The computer-generated randomisation list was created by the study statisticians with random block sizes of two or four. Participants and all study staff not delivering the vaccines were masked to treatment allocation. The coprimary outcomes were safety and reactogenicity, and immunogenicity (antispike protein IgG titres by ELISA and cellular immune response by ELISpot). We compared immunogenicity at 28 days after the third dose versus 14 days after the fourth dose and at day 0 versus day 14 relative to the fourth dose. Safety and reactogenicity were assessed in the per-protocol population, which comprised all participants who received a fourth-dose booster regardless of their SARS-CoV-2 serostatus. Immunogenicity was primarily analysed in a modified intention-to-treat population comprising seronegative participants who had received a fourth-dose booster and had available endpoint data. This trial is registered with ISRCTN, 73765130, and is ongoing.Findings Between Jan 11 and Jan 25, 2022, 166 participants were screened, randomly assigned, and received either full-dose BNT162b2 (n=83) or half-dose mRNA-1273 (n=83) as a fourth dose. The median age of these participants was 70·1 years (IQR 51·6–77·5) and 86 (52%) of 166 participants were female and 80 (48%) were male. The median interval between the third and fourth doses was 208·5 days (IQR 203·3–214·8). Pain was the most common local solicited adverse event and fatigue was the most common systemic solicited adverse event after BNT162b2 or mRNA-1273 booster doses. None of three serious adverse events reported after a fourth dose with BNT162b2 were related to the study vaccine. In the BNT162b2 group, geometric mean anti-spike protein IgG concentration at day 28 after the third dose was 23 325 ELISA laboratory units (ELU)/mL (95% CI 20 030–27 162), which increased to 37 460 ELU/mL (31 996–43 857) at day 14 after the fourth dose, representing a significant fold change (geometric mean 1·59, 95% CI 1·41–1·78). There was a significant increase in geometric mean anti-spike protein IgG concentration from 28 days after the third dose (25 317 ELU/mL, 95% CI 20 996–30 528) to 14 days after a fourth dose of mRNA-1273 (54 936 ELU/mL, 46 826–64 452), with a geometric mean fold change of 2·19 (1·90–2·52). The fold changes in anti-spike protein IgG titres from before (day 0) to after (day 14) the fourth dose were 12·19 (95% CI 10·37–14·32) and 15·90 (12·92–19·58) in the BNT162b2 and mRNA-1273 groups, respectively. T-cell responses were also boosted after the fourth dose (eg, the fold changes for the wild-type variant from before to after the fourth dose were 7·32 [95% CI 3·24–16·54] in the BNT162b2 group and 6·22 [3·90–9·92] in the mRNA-1273 group).Interpretation Fourth-dose COVID-19 mRNA booster vaccines are well tolerated and boost cellular and humoral immunity. Peak responses after the fourth dose were similar to, and possibly better than, peak responses after the third dose

    Distribution of Bell’s palsy diagnosis dates and dates of vaccination during the observation period.

    No full text
    <p>Distribution of Bell’s palsy diagnosis dates and dates of vaccination during the observation period.</p

    Age and season specific relative incidences (95% CI) of Bell’s palsy within 42 days of influenza vaccination (adjusted for seasonality, ARI consultations and pregnancy).

    No full text
    <p>Age and season specific relative incidences (95% CI) of Bell’s palsy within 42 days of influenza vaccination (adjusted for seasonality, ARI consultations and pregnancy).</p

    Distribution of acute respiratory infection dates and dates of vaccination during the observation period.

    No full text
    <p>There was no statistical evidence of an association between Bell’s palsy and a consultation for influenza (RR 2.41, 95% CI 0.76–7.58).</p

    Main characteristics of cases occurring between 1 June 2009 and 30 June 2013 by vaccination status.

    No full text
    <p>Main characteristics of cases occurring between 1 June 2009 and 30 June 2013 by vaccination status.</p
    corecore