149 research outputs found

    Virginity and Guilt Differences Between Men and Women

    Get PDF
    In this research, the authors measured the levels of sexual guilt between two groups of people on multiple levels, virgins and nonvirgins, by gender. The differences between men and women when it comes to virginity will also be studied. Based on the sample size of college students, N = 364. College students (N=364) completed a 34-item online survey of questions that measure guilt levels. Ten out of the twenty questions are demographic questions, such as: age, ethnicity, religion, year, etc. The other questions were a combination of Likert scaled questions and open ended responses. We predicted that females will produce more guilt compared to males after they lose their virginity. The researchers found that females do produce sexual guilt compared to males and high scores of religiosity also produce higher levels of sexual guilt for females

    Emerging approaches to measure photosynthesis from the leaf to the ecosystem

    Get PDF
    Measuring photosynthesis is critical for quantifying and modeling leaf to regional scale productivity of managed and natural ecosystems. This review explores existing and novel advances in photosynthesis measurements that are certain to provide innovative directions in plant science research. First, we address gas exchange approaches from leaf to ecosystem scales. Leaf level gas exchange is a mature method but recent improvements to the user interface and environmental controls of commercial systems have resulted in faster and higher quality data collection. Canopy chamber and micrometeorological methods have also become more standardized tools and have an advanced understanding of ecosystem functioning under a changing environment and through long time series data coupled with community data sharing. Second, we review proximal and remote sensing approaches to measure photosynthesis, including hyperspectral reflectance- A nd fluorescence-based techniques. These techniques have long been used with aircraft and orbiting satellites, but lower-cost sensors and improved statistical analyses are allowing these techniques to become applicable at smaller scales to quantify changes in the underlying biochemistry of photosynthesis. Within the past decade measurements of chlorophyll fluorescence from earth-orbiting satellites have measured Solar Induced Fluorescence (SIF) enabling estimates of global ecosystem productivity. Finally, we highlight that stronger interactions of scientists across disciplines will benefit our capacity to accurately estimate productivity at regional and global scales. Applying the multiple techniques outlined in this review at scales from the leaf to the globe are likely to advance understanding of plant functioning from the organelle to the ecosystem

    A review of transformative strategies for climate mitigation by grasslands

    Get PDF
    Grasslands can significantly contribute to climate mitigation. However, recent trends indicate that human activities have switched their net cooling effect to a warming effect due to management intensification and land conversion. This indicates an urgent need for strategies directed to mitigate climate warming while enhancing productivity and efficiency in the use of land and natural (nutrients, water) resources. Here, we examine the potential of four innovative strategies to slow climate change including: 1) Adaptive multi-paddock grazing that consists of mimicking how ancestral herds roamed the Earth; 2) Agrivoltaics that consists of simultaneously producing food and energy from solar panels on the same land area; 3) Agroforestry with a reverse phenology tree species, Faidherbia (Acacia) albida, that has the unique trait of being photosynthetically active when intercropped herbaceous plants are dormant; and, 4) Enhanced Weathering, a negative emission technology that removes atmospheric CO2 from the atmosphere. Further, we speculate about potential unknown consequences of these different management strategies and identify gaps in knowledge. We find that all these strategies could promote at least some of the following benefits of grasslands: CO2 sequestration, non-CO2 GHG mitigation, productivity, resilience to climate change, and an efficient use of natural resources. However, there are obstacles to be overcome. Mechanistic assessment of the ecological, environmental, and socio-economic consequences of adopting these strategies at large scale are urgently needed to fully assess the potential of grasslands to provide food, energy and environmental security

    The effect of increasing temperature on crop photosynthesis: From enzymes to ecosystems

    Get PDF
    As global land surface temperature continues to rise and heatwave events increase in frequency, duration, and/or intensity, our key food and fuel cropping systems will likely face increased heat-related stress. A large volume of literature exists on exploring measured and modelled impacts of rising temperature on crop photosynthesis, from enzymatic responses within the leaf up to larger ecosystem-scale responses that reflect seasonal and interannual crop responses to heat. This review discusses (i) how crop photosynthesis changes with temperature at the enzymatic scale within the leaf; (ii) how stomata and plant transport systems are affected by temperature; (iii) what features make a plant susceptible or tolerant to elevated temperature and heat stress; and (iv) how these temperature and heat effects compound at the ecosystem scale to affect crop yields. Throughout the review, we identify current advancements and future research trajectories that are needed to make our cropping systems more resilient to rising temperature and heat stress, which are both projected to occur due to current global fossil fuel emissions

    Responses of vascular plant fine roots and associated microbial communities to whole-ecosystem warming and elevated CO2 in northern peatlands

    Get PDF
    Warming and elevated CO2 (eCO2) are expected to facilitate vascular plant encroachment in peatlands. The rhizosphere, where microbial activity is fueled by root turnover and exudates, plays a crucial role in biogeochemical cycling, and will likely at least partially dictate the response of the belowground carbon cycle to climate changes. We leveraged the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment, to explore the effects of a whole-ecosystem warming gradient (+0°C to 9°C) and eCO2 on vascular plant fine roots and their associated microbes. We combined trait-based approaches with the profiling of fungal and prokaryote communities in plant roots and rhizospheres, through amplicon sequencing. Warming promoted self-reliance for resource uptake in trees and shrubs, while saprophytic fungi and putative chemoorganoheterotrophic bacteria utilizing plant-derived carbon substrates were favored in the root zone. Conversely, eCO2 promoted associations between trees and ectomycorrhizal fungi. Trees mostly associated with short-distance exploration-type fungi that preferentially use labile soil N. Additionally, eCO2 decreased the relative abundance of saprotrophs in tree roots. Our results indicate that plant fine-root trait variation is a crucial mechanism through which vascular plants in peatlands respond to climate change via their influence on microbial communities that regulate biogeochemical cycles

    Can upscaling ground nadir SIF to eddy covariance footprint improve the relationship between SIF and GPP in croplands?

    Get PDF
    Ground solar-induced chlorophyll fluorescence (SIF) is important for the mechanistic understanding of the dynamics of vegetation gross primary production (GPP) at fine spatiotemporal scales. However, eddy covariance (EC) observations generally cover larger footprint areas than ground SIF observations (a bare fiber with nadir), and this footprint mismatch between nadir SIF and GPP could complicate the canopy SIF-GPP relationships. Here, we upscaled nadir SIF observations to EC footprint and investigated the change in SIF-GPP relationships after the upscaling in cropland. We included 13 site-years data in our study, with seven site-years corn, four siteyears soybeans, and two site-years miscanthus, all located in the US Corn Belt. All sites’ crop nadir SIF observations collected from the automated FluoSpec2 system (a hemispheric-nadir system) were upscaled to the GPP footprint-based SIF using vegetation indices (VIs) calculated from high spatiotemporal satellite reflectance data. We found that SIF-GPP relationships were not substantially changed after upscaling nadir SIF to GPP footprint at our crop sites planted with corn, soybean, and miscanthus, with R2 change after the upscaling ranging from -0.007 to 0.051 and root mean square error (RMSE) difference from -0.658 to 0.095 umol m-2 s-1 relative to original nadir SIF-GPP relationships across all the site-years. The variation of the SIF-GPP relationship within each species across different site-years was similar between the original nadir SIF and upscaled SIF. Different VIs, EC footprint models, and satellite data led to marginal differences in the SIF-GPP relationships when upscaling nadir SIF to EC footprint. Our study provided a methodological framework to correct this spatial mismatch between ground nadir SIF and GPP observations for croplands and potentially for other ecosystems. Our results also demonstrated that the spatial mismatch between ground nadir SIF and GPP might not significantly affect the SIF-GPP relationship in cropland that are largely homogeneous

    Substantial carbon loss respired from a corn-soybean agroecosystem highlights the importance of careful management as we adapt to changing climate

    Get PDF
    Understanding agroecosystem carbon (C) cycle response to climate change and management is vital for maintaining their long-term C storage. We demonstrate this importance through an in-depth examination of a ten-year eddy covariance dataset from a corn-corn-soybean crop rotation grown in the Midwest United States. Ten-year average annual net ecosystem exchange (NEE) showed a net C sink of -0.39 Mg C ha-1 yr-1. However, NEE in 2014 and 2015 from the corn ecosystem was 3.58 and 2.56 Mg C ha-1 yr-1, respectively. Most C loss occurred during the growing season, when photosynthesis should dominate and C fluxes should reflect a net ecosystem gain. Partitioning NEE into gross primary productivity (GPP) and ecosystem respiration (ER) showed this C \u27burp\u27 was driven by higher ER, with a 51% (2014) and 57% (2015) increase from the ten-year average (15.84 Mg C ha-1 yr-1). GPP was also higher than average (16.24 Mg C ha-1 yr-1) by 25% (2014) and 37% (2015), but this was not enough to offset the C emitted from ER. This increased ER was likely driven by enhanced soil microbial respiration associated with ideal growing season climate, substrate availability, nutrient additions, and a potential legacy effect from drought

    Phenological corrections to a field-scale, ET-based crop stress indicator: An application to yield forecasting across the U.S. Corn Belt

    Get PDF
    Soil moisture deficiency is a major factor in determining crop yields in water-limited agricultural production regions. Evapotranspiration (ET), which consists of crop water use through transpiration and water loss through direct soil evaporation, is a good indicator of soil moisture availability and vegetation health. ET therefore has been an integral part of many yield estimation efforts. The Evaporative Stress Index (ESI) is an ET-based crop stress indicator that describes temporal anomalies in a normalized evapotranspiration metric as derived from satellite remote sensing. ESI has demonstrated the capacity to explain regional yield variability in water-limited regions. However, its performance in some regions where the vegetation cycle is intensively managed appears to be degraded due to interannual phenological variability. This investigation selected three study sites across the U.S. Corn Belt – Mead, NE, Ames, IA and Champaign, IL – to investigate the potential operational value of 30-m resolution, phenologically corrected ESI datasets for yield prediction. The analysis was conducted over an 8-year period from 2010 to 2017, which included both drought and pluvial conditions as well as a broad range in yield values. Detrended yield anomalies for corn and soybean were correlated with ESI computed using annual ET curves temporally aligned based on (1) calendar date, (2) crop emergence date, and (3) a growing degree day (GDD) scaled time axis. Results showed that ESI has good correlations with yield anomalies at the county scale and that phenological corrections to the annual temporal alignment of the ET timeseries improve the correlation, especially when the time axis is defined by GDD rather than the calendar date. Peak correlations occur in the silking stage for corn and the reproductive stage for soybean – phases when these crops are particularly sensitive to soil moisture deficiencies. Regression equations derived at the time of peak correlation were used to estimate yields at county scale using a leave-one-out cross-validation strategy. The ESI-based yield estimates agree well with the USDA National Agricultural Statistics Service (NASS) county-level crop yield data, with correlation coefficients ranging from 0.79 to 0.93 and percent root-mean-square errors of 5–8%. These results demonstrate that remotely sensed ET at high spatiotemporal resolution can convey valuable water stress information for forecasting crop yields across the Corn Belt if interannual phenological variability is considered

    The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems.

    Get PDF
    As global land surface temperature continues to rise and heatwave events increase in frequency, duration, and/or intensity, our key food and fuel cropping systems will likely face increased heat-related stress. A large volume of literature exists on exploring measured and modelled impacts of rising temperature on crop photosynthesis, from enzymatic responses within the leaf up to larger ecosystem-scale responses that reflect seasonal and interannual crop responses to heat. This review discusses (i) how crop photosynthesis changes with temperature at the enzymatic scale within the leaf; (ii) how stomata and plant transport systems are affected by temperature; (iii) what features make a plant susceptible or tolerant to elevated temperature and heat stress; and (iv) how these temperature and heat effects compound at the ecosystem scale to affect crop yields. Throughout the review, we identify current advancements and future research trajectories that are needed to make our cropping systems more resilient to rising temperature and heat stress, which are both projected to occur due to current global fossil fuel emissions

    Challenges and opportunities in land surface modelling of savanna ecosystems

    Get PDF
    The savanna complex is a highly diverse global biome that occurs within the seasonally dry tropical to sub-tropical equatorial latitudes and are structurally and functionally distinct from grasslands and forests. Savannas are open-canopy environments that encompass a broad demographic continuum, often characterised by a changing dominance between C3-tree and C4-grass vegetation, where frequent environmental disturbances such as fire modulates the balance between ephemeral and perennial life forms. Climate change is projected to result in significant changes to the savanna floristic structure, with increases to woody biomass expected through CO2 fertilisation in mesic savannas and increased tree mortality expected through increased rainfall interannual variability in xeric savannas. The complex interaction between vegetation and climate that occurs in savannas has traditionally challenged terrestrial biosphere models (TBMs), which aim to simulate the interaction between the atmosphere and the land surface to predict responses of vegetation to changing in environmental forcing. In this review, we examine whether TBMs are able to adequately represent savanna fluxes and what implications potential deficiencies may have for climate change projection scenarios that rely on these models. We start by highlighting the defining characteristic traits and behaviours of savannas, how these differ across continents and how this information is (or is not) represented in the structural framework of many TBMs. We highlight three dynamic processes that we believe directly affect the water use and productivity of the savanna system: phenology, root-water access and fire dynamics. Following this, we discuss how these processes are represented in many current-generation TBMs and whether they are suitable for simulating savanna fluxes.Finally, we give an overview of how eddy-covariance observations in combination with other data sources can be used in model benchmarking and intercomparison frameworks to diagnose the performance of TBMs in this environment and formulate road maps for future development. Our investigation reveals that many TBMs systematically misrepresent phenology, the effects of fire and root-water access (if they are considered at all) and that these should be critical areas for future development. Furthermore, such processes must not be static (i.e. prescribed behaviour) but be capable of responding to the changing environmental conditions in order to emulate the dynamic behaviour of savannas. Without such developments, however, TBMs will have limited predictive capability in making the critical projections needed to understand how savannas will respond to future global change
    • …
    corecore