47 research outputs found

    1-Diphenyl­methyl-4-[3-(4-fluoro­benzo­yl)prop­yl]piperazine-1,4-diium dichloride monohydrate

    Get PDF
    In the title compound, C27H31FN2O2+·2Cl−·H2O, the piperazine ring adopts a chair conformation and both N atoms are protonated. The Cl− anions form strong hydrogen bonds to these protons. O/N—H⋯Cl and C—H⋯O hydrogen bonds link the anions, cations and water of hydration into a three-dimensional network

    Developing a Semantic-Driven Hybrid Segmentation Method for Point Clouds of 3D Shapes

    Get PDF
    With the rapid development of point cloud processing technologies and the availability of a wide range of 3D capturing devices, a geometric object from the real world can be directly represented digitally as a dense and fine point cloud. Decomposing a 3D shape represented in point cloud into meaningful parts has very important practical implications in the fields of computer graphics, virtual reality and mixed reality. In this paper, a semantic-driven automated hybrid segmentation method is proposed for 3D point cloud shapes. Our method consists of three stages: semantic clustering, variational merging, and region remerging. In the first stage, a new feature of point cloud, called Local Concave-Convex Histogram, is introduced to first extract saddle regions complying with the semantic boundary feature. All other types of regions are then aggregated according to this extracted feature. This stage often leads to multiple over-segmentation convex regions, which are then remerged by a variational method established based on the narrow-band theory. Finally, in order to recombine the regions with the approximate shapes, order relation is introduced to improve the weighting forms in calculating the conventional Shape Diameter Function. We have conducted extensive experiments with the Princeton Dataset. The results show that the proposed algorithm outperforms the state-of-the-art algorithms in this area. We have also applied the proposed algorithm to process the point cloud data acquired directly from the real 3D objects. It achieves excellent results too. These results demonstrate that the method proposed in this paper is effective and universal

    Comprehensive characterization of ERV-K (HML-8) in the chimpanzee genome revealed less genomic activity than humans

    Get PDF
    Endogenous retroviruses (ERVs) originate from ancestral germline infections caused by exogenous retroviruses. Throughout evolution, they have become fixed within the genome of the animals into which they were integrated. As ERV elements coevolve with the host, they are normally epigenetically silenced and can become upregulated in a series of physiological and pathological processes. Generally, a detailed ERV profile in the host genome is critical for understanding the evolutionary history and functional performance of the host genome. We previously characterized and cataloged all the ERV-K subtype HML-8 loci in the human genome; however, this has not been done for the chimpanzee, the nearest living relative of humans. In this study, we aimed to catalog and characterize the integration of HML-8 in the chimpanzee genome and compare it with the integration of HML-8 in the human genome. We analyzed the integration of HML-8 and found that HML-8 pervasively invaded the chimpanzee genome. A total of 76 proviral elements were characterized on 23/24 chromosomes, including detailed elements distribution, structure, phylogeny, integration time, and their potential to regulate adjacent genes. The incomplete structure of HML-8 proviral LTRs will undoubtedly affect their activity. Moreover, the results indicated that HML-8 integration occurred before the divergence between humans and chimpanzees. Furthermore, chimpanzees include more HML-8 proviral elements (76 vs. 40) and fewer solo long terminal repeats (LTR) (0 vs. 5) than humans. These results suggested that chimpanzee genome activity is less than the human genome and that humans may have a better ability to shape and screen integrated proviral elements. Our work is informative in both an evolutionary and a functional context for ERVs

    Identification of differentially expressed HERV-K(HML-2) loci in colorectal cancer

    Get PDF
    Colorectal cancer is one of the malignant tumors with the highest mortality rate in the world. Survival rates vary significantly among patients at various stages of the disease. A biomarker capable of early diagnosis is required to facilitate the early detection and treatment of colorectal cancer. Human endogenous retroviruses (HERVs) are abnormally expressed in various diseases, including cancer, and have been involved in cancer development. Real-time quantitative PCR was used to detect the transcript levels of HERV-K(HML-2) gag, pol, and env in colorectal cancer to systematically investigate the connection between HERV-K(HML-2) and colorectal cancer. The results showed that HERV-K(HML-2) transcript expression was significantly higher than healthy controls and was consistent at the population and cell levels. We also used next-generation sequencing to identify and characterize HERV-K(HML-2) loci that were differentially expressed between colorectal cancer patients and healthy individuals. The analysis revealed that these loci were concentrated in immune response signaling pathways, implying that HERV-K impacts the tumor-associated immune response. Our results indicated that HERV-K might serve as a screening tumor marker and a target for tumor immunotherapy in colorectal cancer

    J. Alloy. Compd.

    No full text
    CoFe2O4 magnetic particles were prepared by co-precipitation method in 60 degrees C homogeneous aqueous solution without any subsequent heat treatment. It was found that the mixing procedure and Fe2+/Fe3+ ratio of initial solution were critical in the preparation of CoFe2O4 particles in particle size, magnetization characters, uniformity in particle size and even cation distribution in spinel structure. Two different procedures were used to precipitate CoFe2O4 magnetic particles. Evidenced by XRD, Mossbauer analyses and magnetization determination, particles in comparative uniformity average size were obtained in procedure A, denoted as normal pH regulation procedure, in which NaOH solution was dropped into the mixture solution of iron ions, and with the decreasing in Fe2+/Fe3+ ratio of initial solution, the particle size decreased, which followed the same rule of diversification in saturation magnetization. Uniformity in particle size lowered when procedure B, referred to as reverse pH regulation procedure, where ferrous and cobalt ions were dropped into alkaline solution, was used to precipitate CoFe2O4, In both procedures, with the decreasing in Fe2+/Fe3+ ratio of initial solution, the saturation magnetization decreased, while the magnetic coercivity decreased but increased sharply when Fe2+/Fe3+ ratio of initial solution was 0. (C) 2007 Elsevier B.V. All rights reserved.CoFe2O4 magnetic particles were prepared by co-precipitation method in 60 degrees C homogeneous aqueous solution without any subsequent heat treatment. It was found that the mixing procedure and Fe2+/Fe3+ ratio of initial solution were critical in the preparation of CoFe2O4 particles in particle size, magnetization characters, uniformity in particle size and even cation distribution in spinel structure. Two different procedures were used to precipitate CoFe2O4 magnetic particles. Evidenced by XRD, Mossbauer analyses and magnetization determination, particles in comparative uniformity average size were obtained in procedure A, denoted as normal pH regulation procedure, in which NaOH solution was dropped into the mixture solution of iron ions, and with the decreasing in Fe2+/Fe3+ ratio of initial solution, the particle size decreased, which followed the same rule of diversification in saturation magnetization. Uniformity in particle size lowered when procedure B, referred to as reverse pH regulation procedure, where ferrous and cobalt ions were dropped into alkaline solution, was used to precipitate CoFe2O4, In both procedures, with the decreasing in Fe2+/Fe3+ ratio of initial solution, the saturation magnetization decreased, while the magnetic coercivity decreased but increased sharply when Fe2+/Fe3+ ratio of initial solution was 0. (C) 2007 Elsevier B.V. All rights reserved

    J. Alloy. Compd.

    No full text
    Gallium-bearing magnetite particles were synthesized by aerial oxidation of alkaline suspension containing both ferrous and gallium ions. It was found that the mixing procedure and temperature were critical in the preparation of ferrite particles without the formation of alpha-FeOOH (ferric oxyhydroxide), non-spherical particles and amorphous phase, evidenced by characterization of SEM and XRD. On the other band, the concentration of Ga3+ entry into the structure of spinel was different with the mixing procedure and temperature. Single phase of spinel gallium-bearing magnetites were precipitated at the temperature from 25 to 90 degrees C in the C procedure in which the neutralization of Ga was performed firstly, but the concentration of Ga entry into spinel of magnetites decreased with the temperature increasing. While in the procedure D in which neutralization of Fe ions was performed firstly, single phase of spinel gallium-bearing magnetites were precipitated only at the temperature above 65 degrees C, and the content of gallium precipitated into the magnetites increased with the temperature. Mossbauer analysis and magnetic characteristic were used to investigate the cation distribution of the gallium bearing ferrites with different ratio of Ga3+/Fe2+, which showed small content gallium introduction to have entered the tetrahedral sites preferentially rather than the octahedral sites, and increasing gallium introduction to have located between octahedral and tetrahedral sites. (c) 2007 Elsevier B.V. All rights reserved.Gallium-bearing magnetite particles were synthesized by aerial oxidation of alkaline suspension containing both ferrous and gallium ions. It was found that the mixing procedure and temperature were critical in the preparation of ferrite particles without the formation of alpha-FeOOH (ferric oxyhydroxide), non-spherical particles and amorphous phase, evidenced by characterization of SEM and XRD. On the other band, the concentration of Ga3+ entry into the structure of spinel was different with the mixing procedure and temperature. Single phase of spinel gallium-bearing magnetites were precipitated at the temperature from 25 to 90 degrees C in the C procedure in which the neutralization of Ga was performed firstly, but the concentration of Ga entry into spinel of magnetites decreased with the temperature increasing. While in the procedure D in which neutralization of Fe ions was performed firstly, single phase of spinel gallium-bearing magnetites were precipitated only at the temperature above 65 degrees C, and the content of gallium precipitated into the magnetites increased with the temperature. Mossbauer analysis and magnetic characteristic were used to investigate the cation distribution of the gallium bearing ferrites with different ratio of Ga3+/Fe2+, which showed small content gallium introduction to have entered the tetrahedral sites preferentially rather than the octahedral sites, and increasing gallium introduction to have located between octahedral and tetrahedral sites. (c) 2007 Elsevier B.V. All rights reserved

    Characterizations and Assays of α-Glucosidase Inhibition Activity on Gallic Acid Cocrystals: Can the Cocrystals be Defined as a New Chemical Entity During Binding with the α-Glucosidase?

    No full text
    Cocrystallization with co-former (CCF) has proved to be a powerful approach to improve the solubility and even bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). However, it is still uncertain whether a cocrystal would exert the pharmacological activity in the form of a new chemical entity, an API-CCF supramolecule. In the present study, gallic acid (GA)-glutaric acid and GA-succinimide cocrystals were screened. The solubility, dissolution rate and oral bioavailability of the two cocrystals were evaluated. As expected, AUCs of GA-glutaric acid and GA-succinimide cocrystals were 1.86-fold and 2.60-fold higher than that of single GA, respectively. Moreover, experimental evaluations on α-glucosidase inhibition activity in vitro and theoretical simulations were used to detect whether the two cocrystals would be recognized as a new chemical entity during binding with α-glucosidase, a target protein in hypoglycemic mechanisms. The enzyme activity evaluation results showed that both GA and glutaric acid displayed α-glucosidase inhibition activity, and GA-glutaric acid cocrystals showed strengthened α-glucosidase inhibition activity at a moderate concentration, which is attributed to synergism of the two components. Molecular docking displayed that the GA-glutaric acid complex deeply entered the active cavity of the α-glucosidase in the form of a supramolecule, which made the guest-enzyme binding configuration more stable. For the GA and succinimide system, succinimide showed no enzyme inhibition activity, however, the GA-succinimide complex presented slightly higher α-glucosidase inhibition activity than that of GA. Molecular docking simulation indicated that the guest molecules entering the active cavity of the α-glucosidase were free GA and succinimide, not the GA-succinimide supramolecule

    Associations of the APOB rs693 and rs17240441 polymorphisms with plasma APOB and lipid levels: a meta-analysis

    No full text
    Abstract Background The associations of the apolipoprotein B gene (APOB) rs693 and rs17240441 polymorphisms with plasma levels of APOB and lipids have been widely explored, but the results were inconclusive. This meta-analysis aimed to clarify the associations of the rs693 and rs17240441 polymorphisms with fasting APOB and lipid levels. Methods Sixty-one studies (50,018 subjects) and 23 studies (8425 subjects) were respectively identified for the rs693 and rs17240441 polymorphisms by searching in PubMed, Google Scholar, Web of Science, Cochrane Library, Wanfang, VIP and CNKI databases. The following information was collected for each study: first author, age, gender, ethnicity, health condition, sample size, genotyping, lipid assay method, mean and standard deviation or standard error of APOB and lipid variables by genotypes. A dominant model was used for this meta-analysis. Results The carriers of the rs693 variant allele (T) had higher levels of APOB [standardized mean difference (SMD) = 0.26, 95% confidence interval (CI) = 0.16–0.36, P < 0.01], triglycerides (TG) (SMD = 0.12, 95% CI = 0.05–0.20, P < 0.01), total cholesterol (TC) (SMD = 0.24, 95% CI = 0.17–0.30, P < 0.01) and low-density lipoprotein cholesterol (LDL-C) (SMD = 0.22, 95% CI = 0.14–0.30, P < 0.01), and lower levels of high-density lipoprotein cholesterol (HDL-C) (SMD = −0.06, 95% CI = −0.11–0.01, P = 0.01) than the non-carriers. The carriers of the rs17240441 deletion allele had higher levels of APOB (SMD = 0.13, 95% CI = 0.06–0.20, P < 0.01), TC (SMD = 0.17, 95% CI = 0.07–0.26, P < 0.01) and LDL-C (SMD = 0.15, 95% CI = 0.07–0.23, P < 0.01) than the non-carriers. Conclusions The rs693 polymorphism is significantly associated with higher levels of APOB, TG, TC and LDL-C, and lower levels of HDL-C. The rs17240441 polymorphism is significantly associated with higher levels of APOB, TC and LDL-C. Further studies are needed to elucidate the underlying mechanisms

    Preparation of MoFs-Derived Cobalt Oxide/Carbon Nanotubes Composites for High-Performance Asymmetric Supercapacitor

    No full text
    Metal–organic frameworks (MOFs)-derived metallic oxide compounds exhibit a tunable structure and intriguing activity and have received intensive investigation in recent years. Herein, this work reports metal–organic frameworks (MOFs)-derived cobalt oxide/carbon nanotubes (MWCNTx@Co3O4) composites by calcining the MWCNTx@ZIF-67 precursor in one step. The morphology and structure of the composite were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM) characterization. The compositions and valence states of the compounds were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Benefiting from the structurally stable MOFs-derived porous cobalt oxide frameworks and the homogeneous conductive carbon nanotubes, the synthesized MWCNTx@Co3O4 composites display a maximum specific capacitance of 206.89 F·g−1 at 1.0 A·g−1. In addition, the specific capacitance of the MWCNT3@Co3O4//activated carbon (AC) asymmetric capacitor reaches 50 F·g−1, and has an excellent electrochemical performance. These results suggest that the MWCNTx@Co3O4 composites can be a potential candidate for electrochemical energy storage devices
    corecore