3,113 research outputs found

    Overview on jet results from STAR

    Full text link
    Full jet reconstruction allows access to the parton kinematics over a large energy domain and can be used to constrain the mechanisms of energy loss in heavy-ion collisions. Such measurements are challenging at RHIC, due to the high-multiplicity environments created in heavy-ion collisions. In these proceedings, we report an overview of the results on full jet reconstruction obtained by the STAR experiment. Jet measurements in 200 GeV p+p show that jets are calibrated pQCD probes and provide a baseline for jet measurements in Au+Au collisions. Inclusive differential jet production cross sections and ratios are reported for central 200 GeV Au+Au collisions and compared to p+p. We also present measurements of fully reconstructed di-jets at mid-rapidity, and compare spectra and fragmentation functions in p+p and central Au+Au collisions.Comment: Proceedings for the 26th WWND conferenc

    Multi-strange baryon production in Au+Au collisions at top RHIC energy as a probe of bulk properties

    Full text link
    We report STAR preliminary results on multi-strange baryon production in Au+Au collisions at sqrt(s_NN)=200 GeV at RHIC. Its implication for the formation of a new state of matter is discussed. The system size dependence on the production of strange baryons is investigated to study the onset of strange quark equilibration in the medium. The nuclear modification factor of Lambda, Xi and Omega is also presented. Its suppression at p_T>3 GeV/c supports the formation of a dense interacting medium at RHIC. The spectra of multi-strange baryons reveal that within a hydro-inspired model, they may decouple prior than lighter particles and that their flow may be mostly developed at a partonic level. This idea is emphasized by the measurement of the v_2 of Xi+AntiXi and Omega+AntiOmega whose behaviour is close to the Lambda+AntiLambda baryon elliptic flow in the intermediate p_T region where a constituent quark scaling of v_2 is observed.Comment: 8 pages, 8 figures, Strange Quark Matter 2004 conference proceeding

    Strangeness and the discovery of quark-gluon plasma

    Full text link
    Strangeness flavor yield s and the entropy yield S are the observables of the deconfined quark-gluon state of matter which can be studied in the entire available experimental energy range at AGS, SPS, RHIC, and, in near future, at the LHC energy range. We present here a comprehensive analysis of strange, soft hadron production as function of energy and reaction volume. We discuss the physical properties of the final state and argue how evidence about the primordial QGP emerges.Comment: 16 pages: Invited talk at 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, February 8 - 12, 2005, Salt Lake City, Kolkata, India, to appear in: Journal of Physics: Conference Serie

    Is soft physics entropy driven?

    Full text link
    The soft physics, pT < 2 GeV/c, observables at both RHIC and the SPS have now been mapped out in quite specific detail. From these results there is mounting evidence that this regime is primarily driven by the multiplicity per unit rapidity, dNch/deta. This suggests that the entropy of the system alone is the underlying driving force for many of the global observables measured in heavy-ion collisions. That this is the case and there is an apparent independence on collision energy is surprising. I present the evidence for this multiplicity scaling and use it to make some extremely naive predictions for the soft sector results at the LHC.Comment: Proceedings of Hot Quarks 2006. 8 figures, 6 page

    What's Interesting About Strangeness Production? - An Overview of Recent Results

    Full text link
    In this paper I highlight a few selected topics on strange particle production in heavy-ion collisions. By studying the yield and spectra of strange particles we hope to gain understanding of the conditions reached in, and the ensuing dynamics of, the systems produced when ultra-relativistic heavy-ions are collided.Comment: 17 Pages, 18 figures, Hot Quarks 2004 Proceeding

    K(892)K^{*}(892) Production in Au+Au and pp Collisions at sNN\sqrt{s_{NN}} = 200GeV at STAR

    Full text link
    Mid-rapidity K0(892)KπK^{*0}(892)\to K\pi and K±(892)KS0π±K^{*\pm}(892)\to K_S^0\pi^{\pm} are measured in Au+Au and pp collisions at sNN\sqrt{s_{NN}}=200GeV using the STAR detector at RHIC. The K0(892)K^{*0}(892) mass is systematically shifted at small transverse momentum for both Au+Au and pp collisions. The K0(892)K^{*0}(892) transverse mass spectra are measured in Au+Au collisions at different centralities and in pp collisions. The K0(892)K^{*0}(892) mean transverse momentum as a function of the collision centrality is compared to those of identified π\pi^{-}, KK^{-} and pˉ\bar{p}. The K/KK^{*}/K and ϕ/K\phi/K^{*} ratios are compared to measurements in A+A, pppp, pˉp\bar{p}p, e+ee^{+}e^{-} collisions at various colliding energies. The physics implications of these measurements are also discussed.Comment: 6 pages, 4 figures, proceedings of Strange Quarks in Matter (SQM2003), Atlantic Beach, USA, to be published in J. Phys.

    Strangeness Production at RHIC in the Perturbative Regim

    Full text link
    We investigate strange quark production in Au-Au collisions at RHIC in the framework of the Parton Cascade Model(PCM). The yields of (anti-) strange quarks for three production scenarios -- primary-primary scattering, full scattering, and full production -- are compared to a proton-proton baseline. Enhancement of strange quark yields in central Au-Au collisions compared to scaled p-p collisions increases with the number of secondary interactions. The centrality dependence of strangeness production for the three production scenarios is studied as well. For all production mechanisms, the strangeness yield increases with (Npart)4/3(N_{\rm part})^{4/3}. The perturbative QCD regime described by the PCM is able to account for up to 50% of the observed strangeness at RHIC.Comment: 10 pages, 4 figures, IOP forma

    Time Dependence of Chemical Freeze-out in Relativistic Heavy Ion Collisions

    Get PDF
    We investigate chemical and thermal freeze-out time dependencies for strange particle production for CERN SPS heavy ion collisions in the framework of a dynamical hadronic transport code. We show that the Lambda yield changes considerably after hadronization in the case of Pb+Pb collisions, whereas for smaller system sizes (e.g. S+S) the direct particle production dominates over production from inelastic rescattering. Chemical freeze-out times for strange baryons in Pb+Pb are smaller than for non-strange baryons, but they are still sufficiently long for hadronic rescattering to contribute significantly to the final Lambda yield. Based on inelastic and elastic cross section estimates we expect the trend of shorter freeze-out times (chemical and kinetic), and thus less particle production after hadronization, to continue for multi-strange baryons.Comment: 10 pages, 7 postscript figure

    Energy dependence of kaon production in central Pb+Pb collisions

    Full text link
    Recent results from the NA49 experiment on the energy dependence of charged kaon production in central Pb+Pb collisions are presented. First results from the new data at 80 AGeV beam energy are compared with those from lower and higher energies. A difference in the energy dependence of the / and / ratios is observed. The / ratio shows a non-monotonic behaviour with a maximum near 40 AGeV.Comment: 8 pages, 7 figures, proceedings of talk at SQM2001, Frankfurt, Germany, to appear in J. Phys.
    corecore