56 research outputs found

    Comparative Performances of HFA 134a and CFC-12 in a Reciprocating Water Chiller

    Get PDF

    The Tissue Systems Pathology Test Outperforms Pathology Review in Risk Stratifying Patients With Low-Grade Dysplasia

    Get PDF
    BACKGROUND & AIMS: Low-grade dysplasia (LGD) is associated with an increased risk of progression in Barrett’s esophagus (BE); however, the diagnosis of LGD is limited by substantial interobserver variability. Multiple studies have shown that an objective tissue systems pathology test (TissueCypher Barrett’s Esophagus Test, TSP-9), can effectively predict neoplastic progression in patients with BE. This study aimed to compare the risk stratification performance of the TSP-9 test vs benchmarks of generalist and expert pathology. METHODS: A blinded cohort study was conducted in the screening cohort of a randomized controlled trial of patients with BE with community-based LGD. Biopsies from the first endoscopy with LGD were assessed by the TSP-9 test and independently reviewed by 30 pathologists from 5 countries per standard practice. The accuracy of the test and the diagnoses in predicting high-grade dysplasia (HGD) and esophageal adenocarcinoma (EAC) were compared. RESULTS: A total of 154 patients with BE (122 men), mean age 60.9 ± 9.8 years were studied. Twenty-four patients progressed to HGD/EAC within 5 years (median time of 1.7 years) and 130 did not progress to HGD/EAC within 5 years (median 7.8 years follow-up). The TSP-9 test demonstrated higher sensitivity (71% vs mean 63%, range 33%–88% across 30 pathologists), than the pathology review in detecting patients who progressed (P = .01186). CONCLUSIONS: The TSP-9 test outperformed the pathologists in risk stratifying patients with BE with LGD. Care guided by the test can provide an effective solution to variable pathology review of LGD, improving health outcomes by upstaging care to therapeutic intervention for patients at high risk for progression, while reducing unnecessary interventions in low-risk patients

    (Photo)physical properties of new molecular glasses end-capped with thiophene rings composed of diimide and imine units

    Get PDF
    New symmetrical arylene bisimide derivatives formed by using electron-donating-electron-accepting systems were synthesized. They consist of a phthalic diimide or naphthalenediimide core and imine linkages and are end-capped with thiophene, bithiophene, and (ethylenedioxy)thiophene units. Moreover, polymers were obtained from a new diamine, N,N′-bis(5- aminonaphthalenyl)naphthalene-1,4,5,8-dicarboximide and 2,5- thiophenedicarboxaldehyde or 2,2′-bithiophene-5,5′-dicarboxaldehyde. The prepared azomethine diimides exhibited glass-forming properties. The obtained compounds emitted blue light with the emission maximum at 470 nm. The value of the absorption coefficient was determined as a function of the photon energy using spectroscopic ellipsometry. All compounds are electrochemically active and undergo reversible electrochemical reduction and irreversible oxidation processes as was found in cyclic voltammetry and differential pulse voltammetry (DPV) studies. They exhibited a low electrochemically (DPV) calculated energy band gap (Eg) from 1.14 to 1.70 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels and Eg were additionally calculated theoretically by density functional theory at the B3LYP/6-31G(d,p) level. The photovoltaic properties of two model compounds as the active layer in organic solar cells in the configuration indium tin oxide/poly(3,4-(ethylenedioxy)thiophene):poly(styrenesulfonate)/active layer/Al under an illumination of 1.3 mW/cm2 were studied. The device comprising poly(3-hexylthiophene) with the compound end-capped with bithiophene rings showed the highest value of Voc (above 1 V). The conversion efficiency of the fabricated solar cell was in the range of 0.69-0.90%
    • …
    corecore