1,042 research outputs found

    Effects of pp-wave Interactions on Borromean Efimov Trimers in Heavy-Light Fermi Systems

    Full text link
    We investigate the effects of pp-wave interactions on Efimov trimers in systems comprising two identical heavy fermions and a light particle, with mass ratios larger than 13.613.6. Our focus lies on the borromean regime where the ground-state trimer exists in the absence of dimers. Using pair-wise Lennard-Jones potentials and concentrating on the Lπ=1−L^{\pi} = 1^{-} symmetry, we explore the critical value of the interspecies ss-wave scattering length aca_{c} at which the borromean state appears in several two-component particle systems. We study the universal properties of aca_{c} and the influence of pp-wave fermion-fermion interactions on its value. Our findings show that, in the absence of pp-wave fermion-fermion interactions, aca_{c} is universally determined by the van der Waals radius and mass ratio. However, when attractive interactions between the two fermions are introduced, the formation of the borromean state becomes favored over the absence of pp-wave fermion-fermion interaction. Furthermore, we demonstrate that the pp-wave Efimov effects persist even when the fermion-fermion interaction is taken to the pp-wave unitary limit

    Systematic Mendelian randomization study of the effect of gut microbiome and plasma metabolome on severe COVID-19

    Get PDF
    BackgroundCOVID-19 could develop severe respiratory symptoms in certain infected patients, especially in the patients with immune disorders. Gut microbiome and plasma metabolome act important immunological modulators in the human body and could contribute to the immune responses impacting the progression of COVID-19. However, the causal relationship between specific intestinal bacteria, metabolites and severe COVID-19 remains not clear.MethodsBased on two-sample Mendelian randomization (MR) framework, the causal effects of 131 intestinal taxa and 452 plasma metabolites on severe COVID-19 were evaluated. Single nucleotide polymorphisms (SNPs) strongly associated with the abundance of intestinal taxa and the concentration of plasma metabolites had been utilized as the instrument variables to infer whether they were causal factors of severe COVID-19. In addition, mediation analysis was conducted to find the potential association between the taxon and metabolite, and further colocalization analysis had been performed to validate the causal relationships.ResultsMR analysis identified 13 taxa and 53 metabolites, which were significantly associated with severe COVID-19 as causal factors. Mediation analysis revealed 11 mediated relationships. Myo-inositol, 2-stearoylglycerophosphocholine, and alpha-glutamyltyrosine, potentially contributed to the association of Howardella and Ruminiclostridium 6 with severe COVID-19, respectively. Butyrivibrio and Ruminococcus gnavus could mediate the association of myo-inositol and N-acetylalanine, respectively. In addition, Ruminococcus torques abundance was colocalized with severe COVID-19 (PP.H4 = 0.77) and the colon expression of permeability related protein RASIP1 (PP.H4 = 0.95).ConclusionsOur study highlights the potential causal relationships between gut microbiome, plasma metabolome and severe COVID-19, which potentially serve as clinical biomarkers for risk stratification and prognostication and benefit the mechanism mechanistic investigation of severe COVID-19

    Improved colonic inflammation by nervonic acid via inhibition of NF-ÎșB signaling pathway of DSS-induced colitis mice

    Get PDF
    Background: Nervonic acid (C24:1Δ15, 24:1 ω-9, cis-tetracos-15-enoic acid; NA), a long-chain monounsaturated fatty acid, plays an essential role in prevention of metabolic diseases, and immune regulation, and has anti-inflammatory properties. As a chronic, immune-mediated inflammatory disease, ulcerative colitis (UC) can affect the large intestine. The influences of NA on UC are largely unknown. Purpose: The present study aimed to decipher the anti-UC effect of NA in the mouse colitis model. Specifically, we wanted to explore whether NA can regulate the levels of inflammatory factors in RAW264.7 cells and mouse colitis model. Methods: To address the above issues, the RAW264.7 cell inflammation model was established by lipopolysaccharide (LPS), then the inflammatory factors tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-1ÎČ (IL-1ÎČ), and Interleukin-10 (IL-10) were detected by Enzyme-linked immunosorbent assay (ELISA). The therapeutic effects of NA for UC were evaluated using C57BL/6 mice gavaged dextran sodium sulfate (DSS). Hematoxylin and eosin (H&E) staining, Myeloperoxidase (MPO) kit assay, ELISA, immunofluorescence assay, and LC-MS/MS were used to assess histological changes, MPO levels, inflammatory factors release, expression and distribution of intestinal tight junction (TJ) protein ZO-1, and metabolic pathways, respectively. The levels of proteins involved in the nuclear factor kappa-B (NF-ÎșB) pathway in the UC were investigated by western blotting and RT-qPCR. Results: In vitro experiments verified that NA could reduce inflammatory response and inhibit the activation of key signal pathways associated with inflammation in LPS-induced RAW264.7 cells. Further, results from the mouse colitis model suggested that NA could restore intestinal barrier function and suppress NF-ÎșB signal pathways to ameliorate DSS-induced colitis. In addition, untargeted metabolomics analysis of NA protection against UC found that NA protected mice from colitis by regulating citrate cycle, amino acid metabolism, pyrimidine and purine metabolism. Conclusion: These results suggested that NA could ameliorate the secretion of inflammatory factors, suppress the NF-ÎșB signaling pathway, and protect the integrity of colon tissue, thereby having a novel role in prevention or treatment therapy for UC. This work for the first time indicated that NA might be a potential functional food ingredient for preventing and treating inflammatory bowel disease (IBD).National Key Research and Development, China | Ref. 2021YFE0109200Universidade de Vigo/CISUGThe Provincial Major Scientific and Technological Innovation Project of Shandong | Ref. 2022TZXD0029The Provincial Major Scientific and Technological Innovation Project of Shandong | Ref. 2022TZXD0032The Provincial Major Scientific and Technological Innovation Project of Shandong | Ref. 2021SFGC0904The Provincial Major Scientific and Technological Innovation Project of Shandong | Ref. 2021TZX D004The Natural Science Foundation of Shandong | Ref. ZR2020MH401The Natural Science Foundation of Shandong | Ref. ZR2021QH351National Wheat Industry Technology System of China | Ref. CARS-03–2

    Serum level of S100A8/A9 as a biomarker for establishing the diagnosis and severity of community-acquired pneumonia in children

    Get PDF
    BackgroundS100A8/A9, which is a member of S100 proteins, may be involved in the pathophysiology of Community-acquired pneumonia (CAP) that seriously threatens children’s health. However, circulating markers to assess the severity of pneumonia in children are yet to be explored. Therefore, we aimed to investigate the diagnostic performance of serum S100A8/A9 level in determining the severity of CAP in children.MethodsIn this prospective and observational study, we recruited 195 in-hospital children diagnosed with CAP. In comparison, 63 healthy children (HC) and 58 children with non-infectious pneumonia (pneumonitis) were included as control groups. Demographic and clinical data were collected. Serum S100A8/A9 levels, serum pro-calcitonin concentrations, and blood leucocyte counts were quantified.ResultsThe serum S100A8/A9 levels in patients with CAP was 1.59 ± 1.32 ng/mL, which was approximately five and two times higher than those in healthy controls and those in children with pneumonitis, respectively. Serum S100A8/A9 was elevated parallelly with the clinical pulmonary infection score. The sensitivity, specificity, and Youden’s index of S100A8/A9 ≄1.25 ng/mL for predicting the severity of CAP in children was optimal. The area under the receiver operating characteristic curve of S100A8/A9 was the highest among the indices used to evaluate severity.ConclusionsS100A8/A9 may serve as a biomarker for predicting the severity of the condition in children with CAP and establishing treatment grading

    GPU-based Iterative Cone Beam CT Reconstruction Using Tight Frame Regularization

    Full text link
    X-ray imaging dose from serial cone-beam CT (CBCT) scans raises a clinical concern in most image guided radiation therapy procedures. It is the goal of this paper to develop a fast GPU-based algorithm to reconstruct high quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. For this purpose, we have developed an iterative tight frame (TF) based CBCT reconstruction algorithm. A condition that a real CBCT image has a sparse representation under a TF basis is imposed in the iteration process as regularization to the solution. To speed up the computation, a multi-grid method is employed. Our GPU implementation has achieved high computational efficiency and a CBCT image of resolution 512\times512\times70 can be reconstructed in ~5 min. We have tested our algorithm on a digital NCAT phantom and a physical Catphan phantom. It is found that our TF-based algorithm is able to reconstrct CBCT in the context of undersampling and low mAs levels. We have also quantitatively analyzed the reconstructed CBCT image quality in terms of modulation-transfer-function and contrast-to-noise ratio under various scanning conditions. The results confirm the high CBCT image quality obtained from our TF algorithm. Moreover, our algorithm has also been validated in a real clinical context using a head-and-neck patient case. Comparisons of the developed TF algorithm and the current state-of-the-art TV algorithm have also been made in various cases studied in terms of reconstructed image quality and computation efficiency.Comment: 24 pages, 8 figures, accepted by Phys. Med. Bio

    Wireless Communication Networks for Gas Turbine Engine Testing

    Get PDF
    A new trend in the field of Aeronautical Engine Health Monitoring is the implementation of wireless sensor networks (WSNs) for data acquisition and condition monitoring to partially replace heavy and complex wiring harnesses, which limit the versatility of the monitoring process as well as creating practical deployment issues. Using wireless technologies instead of fixed wiring will fuel opportunities for reduced cabling, faster sensor and network deployment, increased data acquisition flexibility and reduced cable maintenance costs. However, embedding wireless technology into an aero engine (even in the ground testing application considered here) presents some very significant challenges, e.g. a harsh environment with a complex RF transmission environment, high sensor density and high data-rate. In this paper we discuss the results of the Wireless Data Acquisition in Gas Turbine Engine Testing (WIDAGATE) project, which aimed to design and simulate such a network to estimate network performance and de-risk the wireless techniques before the deployment

    Expression of Human Leukocyte Antigen G is associated with Prognosis in Nasopharyngeal Carcinoma

    Get PDF
    Human leukocyte antigen G (HLA-G) has multiple immune regulatory functions including the induction of immune tolerance in malignancies. The roles of HLA-G have not been investigated in nasopharyngeal carcinoma (NPC). This study is aimed to evaluate the role of HLA-G as prognostic factor for NPC patients as well as its role in the immune regulation. Western assays showed high HLA-G expression in NPC cell lines, but low in the immortalized nasopharyngeal epithelial cell line NP69. HLA-G protein was further detected in 79.2% of 552 NPC specimens with immunohistochemistry (IHC), but not in normal nasopharyngeal epithelium tissue. Moreover, high expression of HLA-G predicted poor survival of NPC patients and positively correlated with tumor N classification and recurrence or metastasis. Multivariate analysis indicated that HLA-G was an independent and unfavorable prognostic factor. Furthermore, the presence of CD68+macrophages and IL-10 were also examined, which are two prognostic markers of NPC and important factors for regulating immune surveillance. The correlations of HLA-G with these two immune factors were revealed in NPC tissues. Taken together, our results suggest that HLA-G is an independent biomarker for NPC prognosis, and HLA-G might contribute to NPC progression, which might jointly regulate immune surveillance in NPC together with macrophages and IL-10

    The Impact of Yangtze River Discharge, Ocean Currents and Historical Events on the Biogeographic Pattern of Cellana toreuma along the China Coast

    Get PDF
    Aim: Genetic data were used to measure the phylogeographic distribution of the limpet, Cellana toreuma along the China coast in order to acsertain impacts of historic events, ocean currents and especially freshwater discharge from the Yangtze River on the connectivity of intertidal species with limited larval dispersal capability. Methodology/Principal Findings: Genetic variation in 15 populations of C. toreuma (n = 418), ranging from the Yellow Sea (YS), East China Sea (ECS) and South China Sea (SCS), were determined from partial mitochondrial cytochrome c oxidase subunit I gene. Genetic diversity and divergence based on haplotype frequencies were analyzed using CONTRIB, and AMOVA was used to examine genetic population structure. Historic demographic expansions were evaluated from both neutrality tests and mismatch distribution tests. Among the 30 haplotypes identified, a dominant haplotype No. 1 (H1) existed in all the populations, and a relatively abundant private haplotype (H2) in YS. Pairwise F-ST values between YS and the other two groups were relatively high and the percentage of variation among groups was 10.9%. Conclusions: The high nucleotide and gene diversity in the YS, with large pairwise genetic distances and relatively high percentages of variation among groups, suggests that this group was relatively isolated from ECS and SCS. This is likely driven by historic events, ocean currents, and demographic expansion. We propose that freshwater discharge from the Yangtze River, which may act as physical barrier limiting the southward dispersal of larvae from northern populations, is especially important in determining the separation of the YS group from the rest of the Chinese populations of C. toreuma.Natural Science Foundation for National Natural Science Foundation of China [41076083]; Distinguished Young Scholars of Fujian Province, China [2011J06017]; Fundamental Research Funds for the Central Universities [201012028
    • 

    corecore