3,154 research outputs found

    Minimal Dark Matter in the Local B−LB-L Extension

    Full text link
    The minimal gauge group extension to the standard model (SM) by the local U(1)B−LU(1)_{B-L} (MBLSM) is well known as the minimal model to understand neutrino mass origins via the seesaw mechanism, following the gauge principle. This "small" symmetry also has deep implication to another big thing, dark matter (DM) stability. We demonstrate it in the framework of minimal dark matter (MDM), which aims at addressing two basic questions on DM, stability and the nature of interactions. However, stability and perturbativity may only allow the fermionic quintuplet. The situation is very different in the MBLSM, which leaves the subgroup of U(1)B−LU(1)_{B-L}, the matter parity (−1)3(B−L)(-1)^{3(B-L)}, unbroken; it is able to stabilize all of the weakly-interacting {MDM candidates } after assigning a proper U(1)B−LU(1)_{B-L} charge. For the candidates with nonzero hypercharge, the phenomenological challenge comes from realizing the inelastic DM scenario thus evading the very strict DM direct detention bounds. We present two approaches that can slightly split the CP-even and -odd parts of the neutral components: 1) using the dimension 5 operators, which works for the U(1)B−LU(1)_{B-L} spontaneously breaking at very high scale; 2) mixing with {other fields} having zero hypercharge, which instead works for a low U(1)B−LU(1)_{B-L} breaking scale.Comment: 13 pages without figure

    catena-Poly[nickel(II)-bis­(μ-2-amino­ethane­sulfonato-κ3 N,O:O′;κ3 O:N,O′)]

    Get PDF
    In the title polymeric complex, [Ni(C2H6NO3S)2]n, the NiII ion occupies a special position on an inversion centre and displays a slightly distorted octa­hedral coordination geometry, being linked to four sulfonate O atoms and to two N atoms of the taurine ligands. The sulfonate groups doubly bridge symmetry-related NiII centers, forming polymeric chains along the a axis

    Extra boson mix with Z boson explaining the mass of W boson

    Full text link
    We explore the possibility of explaining the W mass with an extra gauge boson mixing with the Z boson at tree level. Extra boson mixing with Z boson will change the expression of Z boson mass, thus altering the W boson mass. We explore two models in this work. We find that in the Derivative Portal Dark Matter model, there are parameters space which can give the observed W boson mass. And in the U(1) extension model, the kinetic mixing between extra boson and B boson can also predict the observed W boson mass. Both model indicate an extra vector boson with best fit mass around 120 GeV.Comment: 12 pages, 3 figure

    Compression Behaviour of Natural and Reconstituted Clays

    Get PDF
    International audienceThe intercept of the log(1+e) - logσv' straight line is introduced to describe the effect of the starting point on the compressibility of natural and reconstituted clays. It is found that when the effective stress exceeds the remoulded yield stress, the compression behaviour of reconstituted clays is controlled solely by the water content at the remoulded yield stress and the liquid limit. Comparison of the compression behaviour of natural and reconstituted clays indicates that their difference in compressibility is caused by soil structure and the difference in water content at the compression starting point. The compression behaviour of natural clays can be classified into three regimes: 1) the pre-yield regime characterised by small compressibility with soil structure restraining the deformation up to the consolidation yield stress; 2) the transitional regime characterised by a gradual loss of soil structure when the effective stress is between the consolidation yield stress and the transitional stress; and 3) the post-transitional regime characterised by the same change law in compression behaviour as reconstituted clays when the effective stress is higher than the transitional stress. For the investigated clays, the transitional stress is 1.0-3.5 times the consolidation yield stress. The compression index varies solely with the void ratio at an effective stress of 1.0 kPa for both natural clays in post-transitional regime and reconstituted clays when the effective stress exceeds the remoulded yield stress, and when compressed in such cases the compression curves of both natural clays and reconstituted clays can be normalised well to a unique line using the void index

    Decreased Dicer expression elicits DNA damage and up-regulation of MICA and MICB

    Get PDF
    RNA interference (RNAi) acts constitutively to silence the innate immune response, and innate immunity genes are misregulated in Dicer-deficient Caenorhabditis elegans. Here, we show that inhibition of Dicer expression by RNAi in human cells up-regulates major histocompatibility complex class I–related molecules A and B (MICA and MICB). MICA and MICB are innate immune system ligands for the NKG2D receptor expressed by natural killer cells and activated CD8(+)T cells. We reveal that knockdown of Dicer elicits DNA damage. Up-regulation of MICA and MICB by Dicer knockdown is prevented by pharmacologic or genetic inhibition of DNA damage pathway components, including ataxia telangiectasia mutated (ATM) kinase, ATM- and Rad3-related kinase, or checkpoint kinase 1. Therefore we conclude that up-regulation of MICA and MICB is the result of DNA damage response activation caused by Dicer knockdown. Our results suggest that RNAi is indirectly linked to the human innate immune system via the DNA damage pathway

    Genetic evaluation for production and body size traits using different animal models in purebred-Duroc pigs

    Get PDF
    Duroc pigs are popular crossbred terminal sires, and accurate assessment of genetic parameters in the population can help to rationalize breeding programmes. The principle aim of this study were to evaluate the genetic parameters of production (birth weight, BW; age at 115 kg, AGE; feed conversion ratio, FCR) and body size (body length, BL; body height, BH; front cannon circumference, FCC) traits of Duroc pigs. The second objective was to analyze the fit of different genetic assessment models. The variance components and correlations of BW (28,348 records), AGE (28,335 records), FCR (11,135 records), BL (31,544 records), BH (21,862 records), and FCC (14,684 records) traits were calculated by using DMU and AIREMLF90 from BLUPF90 package. In the common environment model, the heritability of BW, AGE, FCR, BL, BH, and FCC traits were 0.17 ± 0.014, 0.30 ± 0.019, 0.28 ± 0.024, 0.16 ± 0.013, 0.14 ± 0.017, and 0.081 ± 0.016, with common litter effect values of 0.25, 0.20, 0.18, 0.23, 0.19, and 0.16, respectively. According to the results of the Akaike information criterion (AIC) calculations, models with smaller AIC values have a better fit. We found that the common environment model with litter effects as random effects for estimating genetic parameters had a better fit. In this Model, the estimated genetic correlations between AGE with BW, FCR, BL, BH, and FCC traits were −0.28 (0.040), 0.76 (0.038), −0.71 (0.036), −0.44 (0.060), and −0.60 (0.073), respectively, with phenotypic correlations of −0.17, 0.52, −0.22, −0.13 and −0.24, respectively. In our analysis of genetic trends for six traits in the Duroc population from 2012 to 2021, we observed significant genetic trends for AGE, BL, and BH. Particularly noteworthy is the rapid decline in the genetic trend for AGE, indicating an enhancement in the pig's growth rate through selective breeding. Therefore, we believe that some challenging-to-select traits can benefit from the genetic correlations between traits. By selecting easily measurable traits, they can gain from synergistic selection effects, leading to genetic progress. Conducting population genetic parameter analysis can assist us in devising breeding strategies
    • …
    corecore