5 research outputs found

    Variations of Lake Ice Phenology on the Tibetan Plateau From 2001 to 2017 Based on MODIS Data

    Get PDF
    Lake ice is a robust indicator of climate change. The availability of information contained in Moderate Resolution Imaging Spectroradiometer daily snow products from 2000 to 2017 could be greatly improved after cloud removal by gap filling. Thresholds based on open water pixel numbers are used to extract the freezeup start and breakup end dates for 58 lakes on the Tibetan Plateau (TP); 18 lakes are also selected to extract the freezeup end and breakup start dates. The lake ice durations are further calculated based on freezeup and breakup dates. Lakes on the TP begin to freezeup in late October and all the lakes start the ice cover period in mid‐January of the following year. In late March, some lakes begin to break up, and all the lakes end the ice cover period in early July. Generally, the lakes in the northern Inner‐TP have earlier freezeup dates and later breakup dates (i.e., longer ice cover durations) than those in the southern Inner‐TP. Over 17 years, the mean ice cover duration of 58 lakes is 157.78 days, 18 (31%) lakes have a mean extending rate of 1.11 day/year, and 40 (69%) lakes have a mean shortening rate of 0.80 day/year. Geographical location and climate conditions determine the spatial heterogeneity of the lake ice phenology, especially the ones of breakup dates, while the physico‐chemical characteristics mainly affect the freezeup dates of the lake ice in this study. Ice cover duration is affected by both climatic and lake specific physico‐chemical factors, which can reflect the climatic and environmental change for lakes on the TP

    Motion Prediction of Catamaran with a Semisubmersible Bow in Wave

    No full text
    Compared with standard vessels, a slender catamaran with a semi-submerged bow (SSB) demonstrates superior seakeeping performance. To predict the motion of an SSB catamaran, computational fluid dynamics methods are adopted in this study and results are validated through small-scale model tests. The pitch, heave, and vertical acceleration are calculated at various wavelengths and speeds. Based on the overset grid and motion region methods, this study obtains the motion responses of an SSB catamaran in regular head waves. The results of the numerical studies are validated with the experimental data and show that the overset grid method is more accurate in predicting the motion of an SSB catamaran; the errors can be controlled within 20%. The movement data in regular waves shows that at a constant speed, the motion response initially increases and then decreases with increasing wavelength. This motion response peak is due to the encountering frequency being close to the natural frequency. Under identical sea conditions, the motion response increases with the increasing Froude number. The motion prediction results, that derive from a shortterm irregular sea state, show that there is an optimal speed range that can effectively reduce the amplitude of motion

    Variations of Lake Ice Phenology on the Tibetan Plateau From 2001 to 2017 Based on MODIS Data

    Get PDF
    An edited version of this paper was published by AGU. Copyright 2019 American Geophysical Union.Lake ice is a robust indicator of climate change. The availability of information contained in Moderate Resolution Imaging Spectroradiometer daily snow products from 2000 to 2017 could be greatly improved after cloud removal by gap filling. Thresholds based on open water pixel numbers are used to extract the freezeup start and breakup end dates for 58 lakes on the Tibetan Plateau (TP); 18 lakes are also selected to extract the freezeup end and breakup start dates. The lake ice durations are further calculated based on freezeup and breakup dates. Lakes on the TP begin to freezeup in late October and all the lakes start the ice cover period in mid‐January of the following year. In late March, some lakes begin to break up, and all the lakes end the ice cover period in early July. Generally, the lakes in the northern Inner‐TP have earlier freezeup dates and later breakup dates (i.e., longer ice cover durations) than those in the southern Inner‐TP. Over 17 years, the mean ice cover duration of 58 lakes is 157.78 days, 18 (31%) lakes have a mean extending rate of 1.11 day/year, and 40 (69%) lakes have a mean shortening rate of 0.80 day/year. Geographical location and climate conditions determine the spatial heterogeneity of the lake ice phenology, especially the ones of breakup dates, while the physico‐chemical characteristics mainly affect the freezeup dates of the lake ice in this study. Ice cover duration is affected by both climatic and lake specific physico‐chemical factors, which can reflect the climatic and environmental change for lakes on the TP

    The Research on Characteristic Parameters and Resistance Chart of Operation and Maintenance Trimaran in the Sea

    No full text
    The paper determined the volume ratio of the main hull and side hull and their position characteristic parameter of operation and maintenance trimaran. Numerical simulation technology was used to do the analysis and calculation of trimarans which have different volume ratio of the main and side hull, and on this basis, the paper tried different positions of main and side hull, finally got the trimaran with optimum resistance performance and the chart of trimaran resistance estimation, so as to provide a new way in the selection of feature parameter of offshore wind farm maintenance trimaran and its resistance estimation
    corecore