24,043 research outputs found
A uniformly accurate (UA) multiscale time integrator pseudospectral method for the Dirac equation in the nonrelativistic limit regime
We propose and rigourously analyze a multiscale time integrator Fourier
pseudospectral (MTI-FP) method for the Dirac equation with a dimensionless
parameter which is inversely proportional to the speed of
light. In the nonrelativistic limit regime, i.e. , the
solution exhibits highly oscillatory propagating waves with wavelength
and in time and space, respectively. Due to the rapid
temporal oscillation, it is quite challenging in designing and analyzing
numerical methods with uniform error bounds in . We
present the MTI-FP method based on properly adopting a multiscale decomposition
of the solution of the Dirac equation and applying the exponential wave
integrator with appropriate numerical quadratures. By a careful study of the
error propagation and using the energy method, we establish two independent
error estimates via two different mathematical approaches as
and ,
where is the mesh size, is the time step and depends on the
regularity of the solution. These two error bounds immediately imply that the
MTI-FP method converges uniformly and optimally in space with exponential
convergence rate if the solution is smooth, and uniformly in time with linear
convergence rate at for all and optimally with
quadratic convergence rate at in the regimes when either
or . Numerical results are
reported to demonstrate that our error estimates are optimal and sharp.
Finally, the MTI-FP method is applied to study numerically the convergence
rates of the solution of the Dirac equation to those of its limiting models
when .Comment: 25 pages, 1 figur
Modeling Emotion Influence from Images in Social Networks
Images become an important and prevalent way to express users' activities,
opinions and emotions. In a social network, individual emotions may be
influenced by others, in particular by close friends. We focus on understanding
how users embed emotions into the images they uploaded to the social websites
and how social influence plays a role in changing users' emotions. We first
verify the existence of emotion influence in the image networks, and then
propose a probabilistic factor graph based emotion influence model to answer
the questions of "who influences whom". Employing a real network from Flickr as
experimental data, we study the effectiveness of factors in the proposed model
with in-depth data analysis. Our experiments also show that our model, by
incorporating the emotion influence, can significantly improve the accuracy
(+5%) for predicting emotions from images. Finally, a case study is used as the
anecdotal evidence to further demonstrate the effectiveness of the proposed
model
Auto-Encoding Scene Graphs for Image Captioning
We propose Scene Graph Auto-Encoder (SGAE) that incorporates the language
inductive bias into the encoder-decoder image captioning framework for more
human-like captions. Intuitively, we humans use the inductive bias to compose
collocations and contextual inference in discourse. For example, when we see
the relation `person on bike', it is natural to replace `on' with `ride' and
infer `person riding bike on a road' even the `road' is not evident. Therefore,
exploiting such bias as a language prior is expected to help the conventional
encoder-decoder models less likely overfit to the dataset bias and focus on
reasoning. Specifically, we use the scene graph --- a directed graph
() where an object node is connected by adjective nodes and
relationship nodes --- to represent the complex structural layout of both image
() and sentence (). In the textual domain, we use
SGAE to learn a dictionary () that helps to reconstruct sentences
in the pipeline, where encodes the desired language prior;
in the vision-language domain, we use the shared to guide the
encoder-decoder in the pipeline. Thanks to the scene graph
representation and shared dictionary, the inductive bias is transferred across
domains in principle. We validate the effectiveness of SGAE on the challenging
MS-COCO image captioning benchmark, e.g., our SGAE-based single-model achieves
a new state-of-the-art CIDEr-D on the Karpathy split, and a competitive
CIDEr-D (c40) on the official server even compared to other ensemble
models
- …