23,332 research outputs found

    Massless scalar fields and topological black holes

    Get PDF
    The exact static solutions in the higher dimensional Einstein-Maxwell-Klein- Gordon theory are investigated. With the help of the methods developed for the effective dilaton type gauge gravity models in two dimensions, we find new spherically and hyperbolically symmetric solutions which generalize the four dimensional configurations of Dereli-Eris. We show that, like in four dimensions, the non-trivial scalar field yields, in general, a naked singularity. The new solutions are compared with the higher dimensional Brans-Dicke black hole type solutions.Comment: 15 pages, LATEX, no figures. (To appear in Phys. Rev. D

    Effective spatial dimension of extremal non-dilatonic black p-branes and the description of entropy on the world volume

    Full text link
    By investigating the critical behavior appearing at the extremal limit of the non-dilatonic, black p-branes in (d+p) dimensions, we find that some critical exponents related to the critical point obey the scaling laws. From the scaling laws we obtain that the effective spatial dimension of the non-dilatonic black holes and black strings is one, and is p for the non-dilatonic black p-branes. For the dilatonic black holes and black p-branes, the effective dimension will depend on the parameters in theories. Thus, we give an interpretation why the Bekenstein-Hawking entropy may be given a simple world volume interpretation only for the non-dilatonic black p-branes.Comment: 4 pages, RevTex, no figures, to appear in Phys. Rev. Let

    Thermodynamical properties of the Universe with dark energy

    Get PDF
    We have investigated the thermodynamical properties of the Universe with dark energy. Adopting the usual assumption in deriving the constant co-moving entropy density that the physical volume and the temperature are independent, we observed some strange thermodynamical behaviors. However, these strange behaviors disappeared if we consider the realistic situation that the physical volume and the temperature of the Universe are related. Based on the well known correspondence between the Friedmann equation and the first law of thermodynamics of the apparent horizon, we argued that the apparent horizon is the physical horizon in dealing with thermodynamics problems. We have concentrated on the volume of the Universe within the apparent horizon and considered that the Universe is in thermal equilibrium with the Hawking temperature on the apparent horizon. For dark energy with w1w\ge -1, the holographic principle and the generalized second law are always respected.Comment: two figures; v2: minor corrections and updates, JCAP in pres

    Critical behavior in 2+1 dimensional black holes

    Get PDF
    The critical behavior and phase transition in the 2+1 dimensional Ba\~nados, Teitelboim, and Zanelli (BTZ) black holes are discussed. By calculating the equilibrium thermodynamic fluctuations in the microcanonical ensemble, canonical ensemble, and grand canonical ensemble, respectively, we find that the extremal spinning BTZ black hole is a critical point, some critical exponents satisfy the scaling laws of the ``first kind'', and the scaling laws related to the correlation length suggest that the effective spatial dimension of extremal black holes is one, which is in agreement with the argument that the extremal black holes are the Bogomol'nyi saturated string states. In addition, we find that the massless BTZ black hole is a critical point of spinless BTZ black holes.Comment: RevTex, 9 pages, nofigur

    Relationship between five-dimensional black holes and de Sitter spaces

    Full text link
    We study a close relationship between the topological anti-de Sitter (TAdS)-black holes and topological de Sitter (TdS) spaces including the Schwarzschild-de Sitter (SdS) black hole in five-dimensions. We show that all thermal properties of the TdS spaces can be found from those of the TAdS black holes by replacing kk by k-k. Also we find that all thermal information for the cosmological horizon of the SdS black hole is obtained from either the hyperbolic-AdS black hole or the Schwarzschild-TdS space by substituting mm with m-m. For this purpose we calculate thermal quantities of bulk, (Euclidean) conformal field theory (ECFT) and moving domain wall by using the A(dS)/(E)CFT correspondences. Further we compute logarithmic corrections to the Bekenstein-Hawking entropy, Cardy-Verlinde formula and Friedmann equation due to thermal fluctuations. It implies that the cosmological horizon of the TdS spaces is nothing but the event horizon of the TAdS black holes and the dS/ECFT correspondence is valid for the TdS spaces in conjunction with the AdS/CFT correspondence for the TAdS black holes.Comment: 17 page

    Black holes in the Brans-Dicke-Maxwell theory

    Get PDF
    The black hole solutions in the higher dimensional Brans-Dicke-Maxwell theory are investigated. We find that the presence of the nontrivial scalar field depends on the spacetime dimensions (D). When D=4, the solution corresponds to the Reissner-Nordstr\"{o}m black hole with a constant scalar field. In higher dimensions (D>4), one finds the charged black hole solutions with the nontrivial scalar field. The thermal properties of the charged black holes are discussed and the reason why the nontrivial scalar field exists are explained. Also the solutions for higher dimensional Brans-Dicke theory are given for comparison.Comment: Revtex, 5 pages, no figures, contents were rewritten and new references were adde

    Examining exotic structure of proton-rich nucleus 23^{23}Al

    Full text link
    The longitudinal momentum distribution (P_{//}) of fragments after one-proton removal from ^{23} Al and reaction cross sections (\sigma_R) for ^{23,24} Al on carbon target at 74A MeV have been measured. The ^{23,24} Al ions were produced through projectile fragmentation of 135 A MeV ^{28} Si primary beam using RIPS fragment separator at RIKEN. P_{//} is measured by a direct time-of-flight (TOF) technique, while \sigma_R is determined using a transmission method. An enhancement in \sigma_R is observed for ^{23} Al compared with ^{24} Al. The P_{//} for ^{22} Mg fragments from ^{23} Al breakup has been obtained for the first time. FWHM of the distributions has been determined to be 232 \pm 28 MeV/c. The experimental data are discussed by using Few-Body Glauber model. Analysis of P_{//} demonstrates a dominant d-wave configuration for the valence proton in ground state of ^{23} Al, indicating that ^{23} Al is not a proton halo nucleus

    Thermodynamic Properties of Spherically-Symmetric, Uniformly-Accelerated Reference Frames

    Get PDF
    We aim to study the thermodynamic properties of the spherically symmetric reference frames with uniform acceleration, including the spherically symmetric generalization of Rindler reference frame and the new kind of uniformly accelerated reference frame. We find that, unlike the general studies about the horizon thermodynamics, one cannot obtain the laws of thermodynamics for their horizons in the usual approaches, despite that one can formally define an area entropy (Bekenstein-Hawking entropy). In fact, the common horizon for a set of uniformly accelerated observers is not always exist, even though the Hawking-Unruh temperature is still well-defined. This result indicates that the Hawking-Unruh temperature is only a kinematic effect, to gain the laws of thermodynamics for the horizon, one needs the help of dynamics. Our result is in accordance with those from the various studies about the acoustic black holes.Comment: 8 page

    On the topology and area of higher dimensional black holes

    Get PDF
    Over the past decade there has been an increasing interest in the study of black holes, and related objects, in higher (and lower) dimensions, motivated to a large extent by developments in string theory. The aim of the present paper is to obtain higher dimensional analogues of some well known results for black holes in 3+1 dimensions. More precisely, we obtain extensions to higher dimensions of Hawking's black hole topology theorem for asymptotically flat (Λ=0\Lambda=0) black hole spacetimes, and Gibbons' and Woolgar's genus dependent, lower entropy bound for topological black holes in asymptotically locally anti-de Sitter (Λ<0\Lambda<0) spacetimes. In higher dimensions the genus is replaced by the so-called σ\sigma-constant, or Yamabe invariant, which is a fundamental topological invariant of smooth compact manifolds.Comment: 15 pages, Latex2e; typos corrected, a convention clarified, resulting in the simplification of certain formulas, other improvement

    Hologrphy and holographic dark energy model

    Full text link
    The holographic principle is used to discuss the holographic dark energy model. We find that the Bekenstein-Hawking entropy bound is far from saturation under certain conditions. A more general constraint on the parameter of the holographic dark energy model is also derived.Comment: no figures, use revtex, v2: use iop style, some typos corrected and references updated, will appear in CQ
    corecore