30,867 research outputs found

    Cosmology with minimal length uncertainty relations

    Full text link
    We study the effects of the existence of a minimal observable length in the phase space of classical and quantum de Sitter (dS) and Anti de Sitter (AdS) cosmology. Since this length has been suggested in quantum gravity and string theory, its effects in the early universe might be expected. Adopting the existence of such a minimum length results in the Generalized Uncertainty Principle (GUP), which is a deformed Heisenberg algebra between minisuperspace variables and their momenta operators. We extend these deformed commutating relations to the corresponding deformed Poisson algebra in the classical limit. Using the resulting Poisson and Heisenberg relations, we then construct the classical and quantum cosmology of dS and Ads models in a canonical framework. We show that in classical dS cosmology this effect yields an inflationary universe in which the rate of expansion is larger than the usual dS universe. Also, for the AdS model it is shown that GUP might change the oscillatory nature of the corresponding cosmology. We also study the effects of GUP in quantized models through approximate analytical solutions of the Wheeler-DeWitt (WD) equation, in the limit of small scale factor for the universe, and compare the results with the ordinary quantum cosmology in each case.Comment: 11 pages, 4 figures, to appear in IJMP

    Cyclic cosmology from Lagrange-multiplier modified gravity

    Full text link
    We investigate cyclic and singularity-free evolutions in a universe governed by Lagrange-multiplier modified gravity, either in scalar-field cosmology, as well as in f(R)f(R) one. In the scalar case, cyclicity can be induced by a suitably reconstructed simple potential, and the matter content of the universe can be successfully incorporated. In the case of f(R)f(R)-gravity, cyclicity can be induced by a suitable reconstructed second function f2(R)f_2(R) of a very simple form, however the matter evolution cannot be analytically handled. Furthermore, we study the evolution of cosmological perturbations for the two scenarios. For the scalar case the system possesses no wavelike modes due to a dust-like sound speed, while for the f(R)f(R) case there exist an oscillation mode of perturbations which indicates a dynamical degree of freedom. Both scenarios allow for stable parameter spaces of cosmological perturbations through the bouncing point.Comment: 8 pages, 3 figures, references added, accepted for publicatio

    Testing the Lorentz and CPT Symmetry with CMB polarizations and a non-relativistic Maxwell Theory

    Full text link
    We present a model for a system involving a photon gauge field and a scalar field at quantum criticality in the frame of a Lifthitz-type non-relativistic Maxwell theory. We will show this model gives rise to Lorentz and CPT violation which leads to a frequency-dependent rotation of polarization plane of radiations, and so leaves potential signals on the cosmic microwave background temperature and polarization anisotropies.Comment: 7 pages, 2 figures, accepted on JCAP, a few references adde

    Thermodynamic of the Ghost Dark Energy Universe

    Full text link
    Recently, the vacuum energy of the QCD ghost in a time-dependent background is proposed as a kind of dark energy candidate to explain the acceleration of the Universe. In this model, the energy density of the dark energy is proportional to the Hubble parameter HH, which is the Hawking temperature on the Hubble horizon of the Friedmann-Robertson-Walker (FRW) Universe. In this paper, we generalized this model and choice the Hawking temperature on the so-called trapping horizon, which will coincides with the Hubble temperature in the context of flat FRW Universe dominated by the dark energy component. We study the thermodynamics of Universe with this kind of dark energy and find that the entropy-area relation is modified, namely, there is an another new term besides the area term.Comment: 8 pages, no figure

    Thermodynamical description of the interacting new agegraphic dark energy

    Full text link
    We describe the thermodynamical interpretation of the interaction between new agegraphic dark energy and dark matter in a non-flat universe. When new agegraphic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium. As soon as an interaction between them is taken into account, their thermodynamical interpretation changes by a stable thermal fluctuation. We obtain a relation between the interaction term of the dark components and this thermal fluctuation.Comment: 11 pages, accepted for publication in MPLA (2010

    Electromagnetic multipole theory for optical nanomaterials

    Get PDF
    Optical properties of natural or designed materials are determined by the electromagnetic multipole moments that light can excite in the constituent particles. In this work we present an approach to calculate the multipole excitations in arbitrary arrays of nanoscatterers in a dielectric host medium. We introduce a simple and illustrative multipole decomposition of the electric currents excited in the scatterers and link this decomposition to the classical multipole expansion of the scattered field. In particular, we find that completely different multipoles can produce identical scattered fields. The presented multipole theory can be used as a basis for the design and characterization of optical nanomaterials

    Exotic phases of interacting p-band bosons

    Full text link
    We study a model of interacting bosons that occupy the first excited p-band states of a two-dimensional optical lattice. In contrast to the much studied single band Bose-Hubbard Hamiltonian, this more complex model allows for non-trivial superfluid phases associated with condensation at non-zero momentum and staggered order of the orbital angular momentum in addition to the superfluid-Mott insulator transition. More specifically, we observe staggered orbital angular momentum order in the Mott phase at commensurate filling and superfluidity at all densities. We also observe a transition between the staggered angular momentum superfluid phase and a striped superfluid, with an alternation of the phase of the superfluid along one direction. The transition between these two phases was observed in a recent experiment, which is then qualitatively well described by our model.Comment: 8 pages, 12 figure

    Matching Conditions in Atomistic-Continuum Modeling of Materials

    Full text link
    A new class of matching condition between the atomistic and continuum regions is presented for the multi-scale modeling of crystals. They ensure the accurate passage of large scale information between the atomistic and continuum regions and at the same time minimize the reflection of phonons at the interface. These matching conditions can be made adaptive if we choose appropriate weight functions. Applications to dislocation dynamics and friction between two-dimensional atomically flat crystal surfaces are described.Comment: 6 pages, 4 figure

    Possibility of cyclic Turnarounds In Brane-world Scenario: Phantom Energy Accretion onto Black Holes and its consequences

    Full text link
    A universe described by braneworlds is studied in a cyclic scenario. As expected such an oscillating universe will undergo turnarounds, whenever the phantom energy density reaches a critical value from either side. It is found that a universe described by RSII brane model will readily undergo oscillations if, either the brane tension, \lambda, or the bulk cosmological constant, \Lambda_{4}, is negative. The DGP brane model does not readily undergo cyclic turnarounds. Hence for this model a modified equation is proposed to incorporate the cyclic nature. It is found that there is always a remanent mass of a black hole at the verge of a turnaround. Hence contrary to known results in literature, it is found that the destruction of black holes at the turnaround is completely out of question. Finally to alleviate, if not solve, the problem posed by the black holes, it is argued that the remanent masses of the black holes do not act as a serious defect of the model because of Hawking evaporation.Comment: 10 pages, 2 figures; International Journal of Theoretical Physics (2012

    Novel Scaling Behavior for the Multiplicity Distribution under Second-Order Quark-Hadron Phase Transition

    Full text link
    Deviation of the multiplicity distribution PqP_q in small bin from its Poisson counterpart pqp_q is studied within the Ginzburg-Landau description for second-order quark-hadron phase transition. Dynamical factor dq≡Pq/pqd_q\equiv P_q/p_q for the distribution and ratio Dq≡dq/d1D_q\equiv d_q/d_1 are defined, and novel scaling behaviors between DqD_q are found which can be used to detect the formation of quark-gluon plasma. The study of dqd_q and DqD_q is also very interesting for other multiparticle production processes without phase transition.Comment: 4 pages in revtex, 5 figures in eps format, will be appeared in Phys. Rev.
    • …
    corecore