9,021 research outputs found
Dynamics of social contagions with local trend imitation
Research on social contagion dynamics has not yet including a theoretical
analysis of the ubiquitous local trend imitation (LTI) characteristic. We
propose a social contagion model with a tent-like adoption probability
distribution to investigate the effect of this LTI characteristic on behavior
spreading. We also propose a generalized edge-based compartmental theory to
describe the proposed model. Through extensive numerical simulations and
theoretical analyses, we find a crossover in the phase transition: when the LTI
capacity is strong, the growth of the final behavior adoption size exhibits a
second-order phase transition. When the LTI capacity is weak, we see a
first-order phase transition. For a given behavioral information transmission
probability, there is an optimal LTI capacity that maximizes the final behavior
adoption size. Finally we find that the above phenomena are not qualitatively
affected by the heterogeneous degree distribution. Our suggested theory agrees
with the simulation results.Comment: 14 pages, 5 figure
Branching Ratios, Forward-backward Asymmetry and Angular Distributions of Decays
Using the form factors evaluated in the perturbative QCD approach,
we study semileptonic and decays,
where and are mixtures of and which
are and states, respectively. Using the technique of helicity
amplitudes, we express the decay amplitudes in terms of several independent and
Lorentz invariant pieces. We study the dilepton invariant mass distributions,
branching ratios, polarizations and forward-backward asymmetries of decays. The ambiguity in the sign of the mixing angle will induce
much large differences to branching ratios of semileptonic B decays: branching
ratios without resonant contributions either have the order of or
. But the polarizations and the forward-backward asymmetries are not
sensitive to the mixing angles. We find that the resonant contributions will
dramatically change the dilepton invariant mass distributions in the resonant
region. We also provide the angular distributions of decays.Comment: 14 pages, 6 figures, version appears in PR
Transition from quintessence to phantom phase in quintom model
Assuming the Hubble parameter is a continuous and differentiable function of
comoving time, we investigate necessary conditions for quintessence to phantom
phase transition in quintom model. For power-law and exponential potential
examples, we study the behavior of dynamical dark energy fields and Hubble
parameter near the transition time, and show that the phantom-divide-line w=-1
is crossed in these models.Comment: LaTeX, 19 pages, four figures, some minor changes in Introduction,
two figures added and the references updated, accepted for publication in
Phys. Rev.
Suppressing disease spreading by using information diffusion on multiplex networks
Although there is always an interplay between the dynamics of information
diffusion and disease spreading, the empirical research on the systemic
coevolution mechanisms connecting these two spreading dynamics is still
lacking. Here we investigate the coevolution mechanisms and dynamics between
information and disease spreading by utilizing real data and a proposed
spreading model on multiplex network. Our empirical analysis finds asymmetrical
interactions between the information and disease spreading dynamics. Our
results obtained from both the theoretical framework and extensive stochastic
numerical simulations suggest that an information outbreak can be triggered in
a communication network by its own spreading dynamics or by a disease outbreak
on a contact network, but that the disease threshold is not affected by
information spreading. Our key finding is that there is an optimal information
transmission rate that markedly suppresses the disease spreading. We find that
the time evolution of the dynamics in the proposed model qualitatively agrees
with the real-world spreading processes at the optimal information transmission
rate.Comment: 11 pages, 8 figure
What can we learn from decays?
We investigate the decays under the
factorization scheme and find many discrepancies between theoretical
predictions and the experimental data. In the tree dominated processes, large
contributions from color-suppressed tree diagrams are required in order to
accommodate with the large decay rates of and . For decays which are both induced
by transition, theoretical predictions on their decay rates are larger
than the data by a factor of 2.8 and 5.5, respectively. Large electro-weak
penguins or some new mechanism are expected to explain the branching ratios of
and . The
soft-collinear-effective-theory has the potential to explain large decay rates
of and via a large hard-scattering form
factor . We will also show that, with proper charming
penguins, predictions on the branching ratios of can also be consistent with the data.Comment: 16 pages, no figur
Charmless Two-body decays In Soft-Collinear-Effective-Theory
We provide the analysis of charmless two-body decays under the
framework of the soft-collinear-effective-theory (SCET), where denotes a
light vector (pseudoscalar) meson. Besides the leading power contributions,
some power corrections (chiraly enhanced penguins) are also taken into account.
Using the current available and experimental data on
branching fractions and CP asymmetry variables, we find two kinds of solutions
in fit for the 16 non-perturbative inputs which are essential in the
87 and decay channels. Chiraly enhanced penguins can change
several charming penguins sizably, since they share the same topology. However,
most of the other non-perturbative inputs and predictions on branching ratios
and CP asymmetries are not changed too much. With the two sets of inputs, we
predict the branching fractions and CP asymmetries of other modes especially
decays. The agreements and differences with results in QCD
factorization and perturbative QCD approach are analyzed. We also study the
time-dependent CP asymmetries in channels with CP eigenstates in the final
states and some other channels such as and
. In the perturbative QCD approach, the
penguins in annihilation diagrams play an important role. Although
they have the same topology with charming penguins in SCET, there are many
differences between the two objects in weak phases, magnitudes, strong phases
and factorization properties.Comment: 34 pages, revtex, 2 figures, published at PR
Interacting Agegraphic Dark Energy
A new dark energy model, named "agegraphic dark energy", has been proposed
recently, based on the so-called K\'{a}rolyh\'{a}zy uncertainty relation, which
arises from quantum mechanics together with general relativity. In this note,
we extend the original agegraphic dark energy model by including the
interaction between agegraphic dark energy and pressureless (dark) matter. In
the interacting agegraphic dark energy model, there are many interesting
features different from the original agegraphic dark energy model and
holographic dark energy model. The similarity and difference between agegraphic
dark energy and holographic dark energy are also discussed.Comment: 10 pages, 5 figures, revtex4; v2: references added; v3: accepted by
Eur. Phys. J. C; v4: published versio
- …