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Dynamics of social contagions with 
local trend imitation
Xuzhen Zhu1, Wei Wang2, Shimin Cai3,4,5 & H. Eugene Stanley5

Research on social contagion dynamics has not yet included a theoretical analysis of the ubiquitous 
local trend imitation (LTI) characteristic. We propose a social contagion model with a tent-like adoption 
probability to investigate the effect of this LTI characteristic on behavior spreading. We also propose 
a generalized edge-based compartmental theory to describe the proposed model. Through extensive 
numerical simulations and theoretical analyses, we find a crossover in the phase transition: when the 
LTI capacity is strong, the growth of the final adoption size exhibits a second-order phase transition. 
When the LTI capacity is weak, we see a first-order phase transition. For a given behavioral information 
transmission probability, there is an optimal LTI capacity that maximizes the final adoption size. 
Finally we find that the above phenomena are not qualitatively affected by the heterogeneous degree 
distribution. Our suggested theoretical predictions agree with the simulation results.

The study of social contagion has attracted wide attention among researchers in the field of network science1,2. 
Studies of social contagion have focused on such subjects as behavior spreading3, information spreading4, and the 
contagion of sentiment5, and they have been both theoretical and experimental in their exploration of the essen-
tial nature of social contagion5,6. Unlike biological contagions (e.g., epidemic spreading)7–9, social contagions have 
a reinforcement effect10.

An early approach to studying social contagions is the threshold model11,12 based on a Markovian process 
without memory. Here the behavior is adopted when the fraction of neighbors who have already adopted the 
behavior equals or exceeds an adoption threshold. Percolation theory can be used to estimate this fraction when 
the initial seed size is vanishingly small12. When the adoption threshold is fixed, a change in mean degree size 
induces a saddle-node bifurcation13,14, and increasing the mean degree size causes the continuous growth pattern 
of the final adoption size to become discontinuous. Previous research has found that in the threshold model such 
factors as initial seed size13, clustering coefficient15, community structure16,17, multiplexity18, and network tempo-
rality19 all influence the social contagion process.

In real-world social contagions, memory affects behavior adoption and reinforcement. This includes both the 
full3 and partial20 memory of the cumulative behavioral information received from neighbors. The memory effect 
causes social contagions to be non-Markovian, and thus many non-Markovian social contagion models have been 
used to depict the social reinforcement effect when memory is included20–25. Recent research has found that social 
reinforcement originates in the memory of non-redundant information transmission22–24, that the growth of the 
final adoption size is dependent on the behavioral information transmission probability, and that it changes from 
continuous to discontinuous when the dynamic or structural parameters are altered.

In real-world cases, the probability that an individual will adopt a new behavior may be either positively or 
negatively correlated with the number of neighbors who have already adopted the behavior. For example, some 
style-conscious people who imitate the behavior of celebrities and adopt the latest fashions may also strive to 
avoid anything that has become overly-popular and ubiquitous (Leibenstein calls this the “snob effect26)”. Another 
example is when an individual habitually patronizes a restaurant with good food and a convivial atmosphere, 
but then avoids it when it becomes overly-popular and crowded. Both of these examples exhibit the local trend 
imitation (LTI) phenomenon27–29, i.e., the adoption probability first increases with an increase in the number of 
adopted neighbors and then decreases. Dodds et al. used a binary state model and found that the LTI character-
istic causes chaos in Markovian social contagions29.
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Because the LTI characteristic in non-Markovian social contagions has not been systematically analyzed, we 
here propose a social contagion model that uses the LTI characteristic to describe the dynamics of behavior 
spreading. The LTI characteristic is described using a tent-like adoption probability. We develop a generalized 
edge-based compartmental theory for quantitative validation. Both the numerical simulations and theoretical 
results show that the LTI characteristic strongly affects the final adoption size. In particular, when the LTI capacity 
is strong the system undergoes a discontinuous first-order phase transition. When it is weak the system under-
goes a continuous second-order phase transition. For each spreading probability there is an optimal LTI capacity 
that maximizes the final adoption size. We also find that the heterogeneity level of the degree distribution does 
not qualitatively affect the outcome.

Results
Model Description. To include the LTI characteristic in social contagions, we use a tent-like function h(x, b) 
as the behavior adoption probability,
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where x is the ratio between an individual’s received information and their degree. The parameter b is the LTI 
capacity of an individual. When 0 < x ≤ b, i.e., region I in Fig. 1(c), the adoption probability increases with x.  
Thus region I is the promotion region. When b < x < 1, i.e., region II in Fig. 1(c), the adoption probability 
decreases with x. Region II is the depression region. Small b increases the LTI capacity, and when the value of b is 
large, the LTI capacity decreases29.

We here use a generalized susceptible-adopted-recovered (SAR) model22–24 to describe behavior spreading 
in complex networks with N nodes and a degree distribution P(k). Figure 1(a) shows that at any given time each 
individual is in either a susceptible (S), adopted (A), or recovered (R) state. An individual in the susceptible state 
has not adopted the behavior. An individual in the adopted state adopts the behavior and transmits it to suscepti-
ble neighbors. An individual in the recovered state abandons the behavior and no longer transmits it.

We begin by randomly selecting an adopter seed. All other individuals are susceptible. At time step t, with 
a probability λ every adopted individual transmits behavioral information to every susceptible neighbor [see 
Fig. 1(b)]. If a susceptible neighbor receives the information, the cumulative units of information m collected by 
the neighbor increases by one, i.e., m → m + 1. When the information is transmitted through an edge, the infor-
mation is not allowe to retransmit along the same edge, i.e., because repetitive transmission of the same infor-
mation along the same edge does not enhance the legitimacy of the behavior, only non-redundant information 
transmission is permitted3. The probability that the susceptible individual will adopt the behavior is h(m/k, b),  
where k is the degree of the susceptible individual. The behavior spreading process is non-Markovian because 

Figure 1. (a) Illustration of social contagions on complex networks. (b) Schematic of information transmission 
from the adopted individual to his each susceptible neighbor with probability λ and state change from being 
adopted to recovered with probability γ. (c) Tent-like behavior adoption probability. Notations b and x indicate 
local trend imitation capacity and the ratio of adopted informants, respectively. In region I, the adoption 
probability increases with x. In region II, the adoption probability decreases with x.
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every susceptible node remembers the cumulative units of information. At the same time step, adopted individu-
als no longer transmit the information and enter the recovered state with a probability γ [see Fig. 1(b)].

Theoretical analysis. Our proposed model is inspired by refs22,30,31. We develop a generalized edge-based 
compartmental theory and define mathematical symbols S(t), A(t), and R(t) to be the fraction of individuals in 
the susceptible, adopted, and recovered states at time step t, respectively.

For convenience, we denote u a randomly chosen individual and v a randomly chosen neighbor of u. We 
assume that when u is in the cavity state32 it receives behavioral information from adopted neighbors but does not 
transmit it. We define θ(t) to be the probability that a randomly chosen neighbor v of u by time t has not transmit-
ted the behavioral information to u along a randomly selected edge. By time t, the individual u with degree k has 
received m units of behavioral information from neighbors with a probability

φ θ θ= − .−( )k t k
m t t( , ) [ ( )] [1 ( )] (2)m

k m m

Individual u with a degree k and m units of received information remains susceptible with a probability 
∏ −= h b[1 ( , )]j

m j
k0 . The probability that an individual u with degree k has received m units of information and by 

time t is still in in susceptible state is
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Taking into consideration all possible degrees k, we calculate the total ratio of susceptible individuals to be

∑= .S t P k S k t( ) ( ) ( , )
(4)k

A randomly chosen neighbor v of individual u is either susceptible, adopted, or recovered, and thus θ(t) can be 
divided, i.e.,

θ ξ ξ ξ= + +t t t t( ) ( ) ( ) ( ), (5)S A R

where ξS(t), ξA(t), and ξR(t) denote the probabilities that a neighbor of individual u in the cavity state is suscepti-
ble, adopted, or recovered, respectively, and thus has not transmitted the information to individual u through an 
edge by time t.

When v with degree k′ is initially susceptible, it cannot transmit behavioral information to u, but can receive 
information from all k′ − 1 neighbors of v except susceptible u. Thus we determine the probability that neighbor 
v of individual u by time t has received m units of information to be

φ θ θ′ − =
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After taking into consideration all possible values of m, we determine the probability that a randomly chosen 
neighbor v with degree k′ remains susceptible to be
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In an uncorrelated network, an edge connects an individual of degree k′ with probability k′P(k′)/〈k〉, where 
〈k〉 is the average degree. We obtain

∑ξ =
′ ′
〈 〉

Θ ′ .
′

t k P k
k

k t( ) ( ) ( , )
(8)S

k

If an adopted individual transmits behavioral information through an edge with probability λ, θ(t) does not 
fulfill the definition, and the decrease of the fraction of θ(t) equals λξA(t), which is
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θ λξ= − .
d t

dt
t( ) ( ) (9)A

If an adopted individual does not transmit the behavioral information through any edge with probability 1 − λ 
but moves into the recovered state with probability γ, ξR(t) will consequently increase. We thus obtain

ξ
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Using Eqs (9) and (10), and the initial conditions of θ(0) = 1 and ξR(0) = 0, we obtain
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λ
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Substituting ξS(t), ξA(t) and ξR(t) of Eq. (5) into Eqs (8, 9 and 11), respectively, we find the time evolution of θ(t) 
to be
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At each time step t, some susceptible individuals adopt the behavior and some adopted individuals move into 
the recovered state. Note that the growth of A(t) is equivalent to the decrease of S(t) minus the fraction of adopted 
individuals that with probability γ enter into the recovered state. Thus the time evolution of A(t) is
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The time evolution of R(t) is

γ= .
dR t

dt
A t( ) ( ) (16)

Equations (2–4) and (12–13) describe social contagion in terms of LTI, and they can be used to compute the 
fraction of each state at any arbitrary time step. When t → ∞, we find the final adoption size R(∞).

In the final state, we find that

∑θ γ θ λ
λ
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〈 〉
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Note that θ(t) decreases with t when adopted individuals continually transmit the behavioral information to 
neighbors. Thus when there is more than one stable fixed point in Eq. (17) only the maximum stable fixed point 
is physically meaningful. Inserting this value into Eqs (2)–(4) gives us the steady value of the susceptible density 
S(∞) and the final adoption size R(∞).

Numerically solving Eq. (18), we find that either (i) it has only two solutions for any value of λ [see Fig. 2(a)], 
or (ii) it has either one or three solutions for different values of λ [see Fig. 2(b)]. When (i) occurs, the trivial solu-
tion of Eq. (17) is θ(∞) = 1 and there is no global behavior adoption. When global behavior occurs, Eq. (17) has 
a non-trivial solution θ(∞) < 1. At the critical point, the equation

∑θ γ λ
γ θ λ

λ
θ∞ =
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is tangent to the horizontal axis at θ(∞) = 1. Thus we find the critical condition of the general social contagion 
model to be
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θ ∞
| = .θ ∞ =

dg
d ( )

0
(19)( ) 1

Using Eq. (19) we find the continuous critical information transmission probability to be

λ γ
γ

=
Γ + − 1

,
(20)c

II

Figure 2. Demonstration of graphical solutions of Eq. (18) for b = 0.1 (a) and b = 0.9 (b). The horizontal axis 
are colored black and the tangent points are denoted as black dots.

Figure 3. Illustration of effects of dynamical parameter b with arbitrary λ, where b is the LTI capacity parameter. 
(a) Under different b, the increase manner of final adoption size changes from continuity at small b (e.g. b = 0.1) to 
discontinuity at large b (e.g. b = 0.5), which embody the second-order and first-order phase transition. (b) vR 
numerically exhibits the fluctuation of R(∞) to intuitively emphasize the critical λc

II corresponding to the peak. 
The higher peak, the more abrupt the discontinuity of R(∞) is (see b = 0.1, 0.5 and 0.9).
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Numerically solving Eqs (17–20), we find λc
II to be a given adoption probability h(x, b). Here λc

II is associated 
with adoption probability h(x, b), recovery probability γ, degree distribution P(k), and average degree 〈k〉.

In the second scenario, Eq. (17) can have three solutions, and a saddle-node bifurcation can occur [see 
Fig. 2(b)], which has been found using the mean network degree13. Only the largest solution is valid because only 
that value can be achieved physically. Otherwise the fixed point is the valid solution. Changing λ causes the phys-
ically meaningful stable solution of θ(∞) jump to an alternate value. A discontinuous growth pattern of R(∞) 
with λ emerges, and solving Eqs (17–20) gives us the critical transmission probability λc

II at which the disconti-
nuity occurs. When b = 0.9, for different values of λ the function g[θ(∞), b, γ, λ] is tangent to the horizontal axis 
at λ = .0 91c

II . When λ λ< c
II, if there are three fixed points in Eq. (17), e.g., λ = 0.7, the largest is the solution. 

When λ λ= c
II, the tangent point is the solution. When λ λ> c

II, e.g., λ = 0.98, the only fixed point is the solution 
of Eq. (17), which abruptly drops to a small value from a large value at λ λ= c

II and causes a discontinuous change 
in R(∞).

For a given P(k), λ, and γ, and using an analytical method similar to Eq. (20), we set f(b) = Γ to be
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Using Eqs (21) and (22) gives us the critical b solution

γ λ γλ
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From this theoretical analysis and using non-redundant memory, the social contagion with an LTI character 
displays first and second-order phase transitions.

Figure 4. Illustration of effects of dynamical parameter λ with arbitrary b, where λ is behavior transmission 
probability and b is LTI capacity parameter. (a) Under different λ, the change pattern of R(∞) with b shows a 
first increase and then a decrease. Ultimately, the R(∞) vanishes to zero. (b) To find the critical point where the 
R(∞) vanishes, vR is introduced here. Besides, the peaks of vR lines correspond to critical points, and the higher 
the peaks the sharper the jump to zero.
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Numerical simulations. Extensive experiments have been performed on ER and SF, where the network size, 
mean degree, and recovered probability are N = 104, 〈k〉 = 10, and γ = 1.0, respectively.

To study social contagions on ER networks, we examine the final adoption size R(∞) as a function of the 
transmission probability λ for different values of the LTI capacity b when γ = 1.0. Figure 3(a) shows that a bifur-
cation analysis of Eq. (17) reveals that the LTI capacity affects the type of phase transition. When the LTI capacity 
is strong, e.g., b = 0.1, the system exhibits a second-order phase transition, because a small b value indicates that a 
low ratio of informants can cause massive behavior adoptions even when the transmission rate λ is low. When the 
LTI capacity is weak, e.g., b = 0.5 or 0.9, the system exhibits a first-order phase transition, because a high b value 
indicates that a high ratio of informants and low transmission rate λ with a low probability of transmitting infor-
mation does not substantially increase the informant ratio of susceptible individuals. When b is high, the trans-
mission rate λ exceeds a critical point and there are massive information receptions by many individuals. The 
informant ratio of susceptible individuals increases rapidly, and there is an abrupt increase in behavior adoption.

We calculate the theoretical value of λc
II using Eqs (17–19). To locate the numerical critical points, we examine 

the relative variance vR of R(∞) shown in Fig. 3(b). The definition of vR is in the Method section. Our theoretical 
results agree with simulation results, except when λ is close to the critical information transmission probability. 
The deviations between our predictions and the simulations are caused by network finite-size effects and strong 
dynamical correlations among the states of neighbors.

Figure 4 shows an analysis of R(∞) versus b for different λ values. For a given λ, R(∞) changes nonmonotoni-
cally with b. In particular, R(∞) first increases with b and then decreases discontinuously to zero. Thus there is an 
optimal bo value at which R(∞) reaches its maximum value. Taking λ into account, when b is smaller than opti-
mal b the LTI capacity is strong, many susceptible neighbors become adopted, and R(∞) steadily increases. When 
b increases the LTI capacity decreases and is less able to inform neighbors, but R(∞) continues to increase until b 
exceeds optimal b. At optimal b, the informing process becomes balanced and R(∞) reaches a maximum. When 
b increases beyone optimal b the LTI capacity and informing capacity decreases, the number of informed neigh-
bors is insufficient to support further informing, and R(∞) gradually declines until it reaches zero. Figure 4(b) 
shows that the critical point can be located by examining vR. Again our theoretical results agree with numerical 
simulation results.

Figure 5. Dependence of the final adoption size R(∞) on b and λ on ER network. Color-coded values of R(∞) 
are obtained from numerical simulations (a) and theoretical solutions (b). Herein, the theoretical solutions are 
achieved through Eqs (2–4) and (9–16). The parameter plain is divided into two regions by b* which is obtained 
from Eqs (19), (20) and (23). In regions I, R(∞) shows a continuous increase and undergoes a second-order 
phase transition. In contrast, R(∞) exhibits a discontinuous increase and undergoes a first-order phase 
transition in region II. The solid white line from theoretical method and green circles from numerical 
simulation all represent the critical λc

II in region I. And the dashed white line from theoretical method and 
green rectangles from numerical simulation as well denote the the critical λc

II in region II.
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Figure 5 shows R(∞) on the phase transition plane (λ, b). According to the type of phase transition, the 
parameter plane (λ, b) is divided into two regions by the critical value of b (b* = 0.237), which can be obtained 
using Eqs (18) and (20). In region I, i.e., (b ≤ b*), R(∞) increases continuously and exhibits a second-order phase 
transition. In region II, i.e., (b > b*), R(∞) increases discontinuously with λ and exhibits a first-order phase tran-
sition. There is also a crossover in the phase transition. The numerical simulation agrees with the theoretical 
solution.

Figure 6 shows a study of the effects of the heterogeneity of degree distribution on social contagion. Here 
we focus on the SF network with different degree exponents v. We set the average degree and network size to 
be 〈k〉 = 10 and N = 104, respectively. Figure 6(a,b) show that the heterogeneity of degree distribution does not 
change the type of phase transition when b = 0.2 and 0.5, respectively.

Figure 6(a) shows that when b = 0.2 the increase of R(∞) exhibits a change from a discontinuous first-order to a 
continuous second-order phase transition, when v rises from 2.1 to 4. Figure 6(b) shows, in contrast, when b = 0.5, 
R(∞) increases and exhibits the same pattern of first-order phase transition at any v value and jumps higher at the 
critical λc

II when v = 2.1, 3, and 4. Figure 6(c–e) show that when v = 2.1, v = 3, and v = 4 increasing b also changes the 
growth pattern of R(∞) from a second-order phase transition to a first-order, but that the final adoption size increases 
with v, i.e., the heterogeneous degree distribution does not impede the change in phase transition. Figure 6(f–h) show 
that when v = 2.1, v = 3, and v = 4 the transmission probability λ influences the final range of R(∞) that increases the 
number of individuals when v is higher. For all three values and under each λ the optimal LTI capacity parameter b that 

Figure 6. Effect of network heterogeneity in social contagion dynamics. For scale-free network with mean 
degree 〈k〉 = 10 and network size N = 10000, dependence of R(∞) on b, v, and λ is explored under parameter 
values. Subgraph (a) and (b) demonstrate the impact on R(∞) of separate degree exponent v, respectively under 
b = 0.2 and 0.5. Then, subgraph (c–e) exhibit the results of b influencing R(∞), referring to degree exponent 
v = 2.1, 3, and 4. Furthermore, for rigorousness, subgraph (f–h) proceed to show the changes of R(∞) based 
on different transmission probability λ, also separately under v = 2.1, 3, and 4. As expected, the theoretical 
solutions, denoted by dash line, perfectly coincide with numerical values, marked by symbols.
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maximizes R(∞) appears, and the critical LTI capacity point of bc
II reduces R(∞) to zero, even though a higher value of 

v promotes a wider spreading of behavior information. A heterogeneous degree distribution always causes a change of 
phase transition as in (c)–(e) and of optimal and critical LTI capacity parameters as in (f)–(h). In addition, the theoret-
ical solutions (dashed lines) agree with the numerical values (symbols) in all subsections of Fig. 6.

Discussion
The local trend imitation (LTI) phenomenon is ubiquitous and strongly affects the dynamics of social contagions. 
We have proposed a social contagion model that uses a tent-like adoption function to systematically study the role 
of LTI. We use an edge-based compartmental theory to describe the model and find that the theoretical predictions 
agree with the numerical simulations. We also perform extensive numerical simulations on ER networks. We find 
that when the LTI capacity is weak the final adoption size grows discontinuously, i.e., the system exhibits a first-order 
transition, but when the LTI capacity is strong the size of the final behavior adoption grows continuously, i.e., the 
system exhibits a second-order phase transition. Thus there is a crossover in the phase transition type. For a given 
probability of information transmission, there is an optimal LTI capacity at which the final adoption size is markedly 
increased. We also find that degree heterogeneity does not qualitatively alter these phenomena.

Method
The relative variance vR is designed numerically to determine the size-dependent critical values λc

II and bc
II. The 

relative variance of R(∞)33 is defined

=
〈 ∞ − 〈 ∞ 〉 〉

〈 ∞ 〉
v R R

R
( ( ) ( ) )

( )
,

(24)
R

2

2

where 〈...〉 is the ensemble average. The value of vR shows the peaks (indicating phase transitions) of R(∞) when 
a dynamical parameter is varied. Thus we know that the λc

II and bc
II correspond to the maximum vR under differ-

ent values of λ and b, respectively.
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