5 research outputs found

    Disguise without Disruption: Utility-Preserving Face De-Identification

    Full text link
    With the rise of cameras and smart sensors, humanity generates an exponential amount of data. This valuable information, including underrepresented cases like AI in medical settings, can fuel new deep-learning tools. However, data scientists must prioritize ensuring privacy for individuals in these untapped datasets, especially for images or videos with faces, which are prime targets for identification methods. Proposed solutions to de-identify such images often compromise non-identifying facial attributes relevant to downstream tasks. In this paper, we introduce Disguise, a novel algorithm that seamlessly de-identifies facial images while ensuring the usability of the modified data. Unlike previous approaches, our solution is firmly grounded in the domains of differential privacy and ensemble-learning research. Our method involves extracting and substituting depicted identities with synthetic ones, generated using variational mechanisms to maximize obfuscation and non-invertibility. Additionally, we leverage supervision from a mixture-of-experts to disentangle and preserve other utility attributes. We extensively evaluate our method using multiple datasets, demonstrating a higher de-identification rate and superior consistency compared to prior approaches in various downstream tasks.Comment: Accepted at AAAI 2024. Paper + supplementary materia

    Learning to Sense for Coded Diffraction Imaging

    No full text
    In this paper, we present a framework to learn illumination patterns to improve the quality of signal recovery for coded diffraction imaging. We use an alternating minimization-based phase retrieval method with a fixed number of iterations as the iterative method. We represent the iterative phase retrieval method as an unrolled network with a fixed number of layers where each layer of the network corresponds to a single step of iteration, and we minimize the recovery error by optimizing over the illumination patterns. Since the number of iterations/layers is fixed, the recovery has a fixed computational cost. Extensive experimental results on a variety of datasets demonstrate that our proposed method significantly improves the quality of image reconstruction at a fixed computational cost with illumination patterns learned only using a small number of training images
    corecore