637 research outputs found

    The biological role of extracellular vesicles in gastric cancer metastasis

    Get PDF
    Gastric cancer (GC) is a tumor characterized by high incidence and mortality, with metastasis being the primary cause of poor prognosis. Extracellular vesicles (EVs) are an important intercellular communication medium. They contain bioactive substances such as proteins, nucleic acids, and lipids. EVs play a crucial biological role in the process of GC metastasis. Through mechanisms such as remodeling the tumor microenvironment (TME), immune suppression, promoting angiogenesis, and facilitating epithelial–mesenchymal transition (EMT) and mesothelial–mesenchymal transition (MMT), EVs promote invasion and metastasis in GC. Further exploration of the biological roles of EVs will contribute to our understanding of the mechanisms underlying GC metastasis and may provide novel targets and strategies for the diagnosis and treatment of GC. In this review, we summarize the mechanisms by which EVs influence GC metastasis from four aspects: remodeling the TME, modulating the immune system, influencing angiogenesis, and modulating the processes of EMT and MMT. Finally, we briefly summarized the organotropism of GC metastasis as well as the potential and limitations of EVs in GC

    Phase management in single-crystalline vanadium dioxide beams

    Get PDF
    A systematic study of various metal-insulator transition (MIT) associated phases of VO2, including metallic R phase and insulating phases (T, M1, M2), is required to uncover the physics of MIT and trigger their promising applications. Here, through an oxide inhibitor-assisted stoichiometry engineering, we show that all the insulating phases can be selectively stabilized in single-crystalline VO2 beams at room temperature. The stoichiometry engineering strategy also provides precise spatial control of the phase configurations in as-grown VO2 beams at the submicron-scale, introducing a fresh concept of phase transition route devices. For instance, the combination of different phase transition routes at the two sides of VO2 beams gives birth to a family of single-crystalline VO2 actuators with highly improved performance and functional diversity. This work provides a substantial understanding of the stoichiometry-temperature phase diagram and a stoichiometry engineering strategy for the effective phase management of VO2

    Hydroxysafflor Yellow A protects spinal cords from ischemia/reperfusion injury in rabbits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydroxysafflor Yellow A (HSYA), which is one of the most important active ingredients of the Chinese herb <it>Carthamus tinctorius L</it>, is widely used in the treatment of cerebrovascular and cardiovascular diseases. However, the potential protective effect of HSYA in spinal cord ischemia/reperfusion (I/R) injury is still unknown.</p> <p>Methods</p> <p>Thirty-nine rabbits were randomly divided into three groups: sham group, I/R group and HSYA group. All animals were sacrificed after neurological evaluation with modified Tarlov criteria at the 48th hour after reperfusion, and the spinal cord segments (L4-6) were harvested for histopathological examination, biochemical analysis and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining.</p> <p>Results</p> <p>Neurological outcomes in HSYA group were slightly improved compared with those in I/R group. Histopathological analysis revealed that HSYA treatment attenuated I/R induced necrosis in spinal cords. Similarly, alleviated oxidative stress was indicated by decreased malondialdehyde (MDA) level and increased superoxide dismutase (SOD) activity after HSYA treatment. Moreover, as seen from TUNEL results, HSYA also protected neurons from I/R-induced apoptosis in rabbits.</p> <p>Conclusions</p> <p>These findings suggest that HSYA may protect spinal cords from I/R injury by alleviating oxidative stress and reducing neuronal apoptosis in rabbits.</p

    Cost-effective upgrade of a focusing system for inelastic X-ray scattering experiments under high pressure

    Get PDF
    This paper describes a scheme utilizing a set of low-cost and compact Kirkpatrick–Baez mirrors for upgrading the optical system of the Taiwan Inelastic X-ray Scattering beamline at SPring-8 for high-pressure experiments using diamond-anvil cells. The scheme as implemented improves the focus to 13 µm × 16 µm with transmission of up to 72%

    An Overview of Systematic Reviews of Chinese Herbal Medicine for Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is a high prevalence neurodegenerative disorder without a disease-modifying therapy. Up to now, a number of systematic reviews have been conducted to evaluate efficacy and safety of Chinese herbal Medicine (CHM) for PD patients. Here, we aimed to assess the methodological quality and reporting quality of systematic reviews using an overview, and then synthesize and evaluate the available evidence level of CHM for PD. Six databases were searched from inception to September 2018. The literatures were selected and data were extracted according to prespecified criteria. A Measurement Tool to Assess Systematic Reviews (AMSTAR) was used to evaluate the quality of methodology, and Grading of Recommendations Assessment, Development, and Evaluation (GRADE) to determine the evidence quality of the primary outcome measures. A total of 11 systematic reviews with 230 RCTs of CHM for PD were included. AMSTAR scores of the included reviews were range from 4 to 9. Compared with conventional western medicine (WCM), CHM paratherapy showed significant effect in improving UPDRS score, Webster scale score, PDQ-39, NMSQuest, CHM Syndrome Integral Scale, and PDSS. However, CHM monotherapy showed no difference relative to WCM according to various outcome measures. Adverse events were reported in 9 systematic reviews. The side effect in CHM paratherapy group was generally less than or lighter than that in WCM group. The quality of the evidence of primary outcomes was moderate (42%) to high (54%) according to the GRADE profiler. The present finding supported the use of CHM paratherapy for PD patients but we should treat the evidence cautiously because of the methodological flaws, whereas there is insufficient evidence of CHM monotherapy for PD

    Scaling of Anisotropic Flows and Nuclear Equation of State in Intermediate Energy Heavy Ion Collisions

    Full text link
    Elliptic flow (v2v_2) and hexadecupole flow (v4v_4) of light clusters have been studied in details for 25 MeV/nucleon 86^{86}Kr + 124^{124}Sn at large impact parameters by Quantum Molecular Dynamics model with different potential parameters. Four parameter sets which include soft or hard equation of state (EOS) with/without symmetry energy term are used. Both number-of-nucleon (AA) scaling of the elliptic flow versus transverse momentum (ptp_t) and the scaling of v4/A2v_4/A^{2} versus (pt/A)2(p_t/A)^2 have been demonstrated for the light clusters in all above calculation conditions. It was also found that the ratio of v4/v22v_4/{v_2}^2 keeps a constant of 1/2 which is independent of ptp_t for all the light fragments. By comparisons among different combinations of EOS and symmetry potential term, the results show that the above scaling behaviors are solid which do not depend the details of potential, while the strength of flows is sensitive to EOS and symmetry potential term.Comment: 5 pages, 5 figure

    A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III

    Full text link
    We established a method on measuring the \dzdzb mixing parameter yy for BESIII experiment at the BEPCII e+ee^+e^- collider. In this method, the doubly tagged ψ(3770)D0D0\psi(3770) \to D^0 \overline{D^0} events, with one DD decays to CP-eigenstates and the other DD decays semileptonically, are used to reconstruct the signals. Since this analysis requires good e/πe/\pi separation, a likelihood approach, which combines the dE/dxdE/dx, time of flight and the electromagnetic shower detectors information, is used for particle identification. We estimate the sensitivity of the measurement of yy to be 0.007 based on a 20fb120fb^{-1} fully simulated MC sample.Comment: 6 pages, 7 figure

    Expression of Human Leukocyte Antigen G is associated with Prognosis in Nasopharyngeal Carcinoma

    Get PDF
    Human leukocyte antigen G (HLA-G) has multiple immune regulatory functions including the induction of immune tolerance in malignancies. The roles of HLA-G have not been investigated in nasopharyngeal carcinoma (NPC). This study is aimed to evaluate the role of HLA-G as prognostic factor for NPC patients as well as its role in the immune regulation. Western assays showed high HLA-G expression in NPC cell lines, but low in the immortalized nasopharyngeal epithelial cell line NP69. HLA-G protein was further detected in 79.2% of 552 NPC specimens with immunohistochemistry (IHC), but not in normal nasopharyngeal epithelium tissue. Moreover, high expression of HLA-G predicted poor survival of NPC patients and positively correlated with tumor N classification and recurrence or metastasis. Multivariate analysis indicated that HLA-G was an independent and unfavorable prognostic factor. Furthermore, the presence of CD68+macrophages and IL-10 were also examined, which are two prognostic markers of NPC and important factors for regulating immune surveillance. The correlations of HLA-G with these two immune factors were revealed in NPC tissues. Taken together, our results suggest that HLA-G is an independent biomarker for NPC prognosis, and HLA-G might contribute to NPC progression, which might jointly regulate immune surveillance in NPC together with macrophages and IL-10
    corecore