105 research outputs found

    Full-Bridge LLC Resonant Converter with Series-Parallel Connected Transformers for Electric Vehicle On-Board Charger

    Get PDF

    Building crack monitoring based on digital image processing

    Get PDF
    Building crack monitoring is of great value to the judgment of building safety. In this study, the digital image processing technology was studied and applied to the monitoring of building cracks. Crack images were collected by CCD camera, and then operations such as graying, correction, denoising and segmentation were carried out to obtain clear crack images. The obtained images are processed morphologically to further improve the quality. Finally, the width and length of cracks are calculated. In the case analysis, the results of 15 cracks measured by microscope were taken as the standards and compared with the calculated results. The results showed that the results calculated in this study and the manual measurement results differed little, and the average error of the width and length is 0.021 mm and 0.024 mm respectively, which suggested that the method proposed had high reliability. The findings of this study provides a new idea for the further development of building crack monitoring field, which is conducive to the accurate assessment of building safety

    Boosting Oxygen Reduction at Pt(111)|Proton Exchange Ionomer Interfaces through Tuning the Microenvironment Water Activity

    Get PDF
    A proton exchange ionomer is one of the most important components in membrane electrode assemblies (MEAs) of polymer electrolyte membrane fuel cells (PEMFCs). It acts as both a proton conductor and a binder for nanocatalysts and carbon supports. The structure and the wetting conditions of the MEAs have a great impact on the microenvironment at the three-phase interphases in the MEAs, which can significantly influence the electrode kinetics such as the oxygen reduction reaction (ORR) at the cathode. Herein, by using the Pt(111)|X ionomer interface as a model system (X = Nafion, Aciplex, D72), we find that higher drying temperature lowers the onset potential for sulfonate adsorption and reduces apparent ORR current, while the current wave for OHad formation drops and shifts positively. Surprisingly, the intrinsic ORR activity is higher after properly correcting the blocking effect of Pt active sites by sulfonate adsorption and the poly(tetrafluoroethylene) (PTFE) skeleton. These results are well explained by the reduced water activity at the interfaces induced by the ionomer/PTFE, according to the mixed potential effect. Implications for how to prepare MEAs with improved ORR activity are provided.This work was supported by the National Natural Science Foundation of China (Nos. 21972131, 22372154). E.H. gratefully acknowledges the International Professorship by USTC and financial support from the Ministerio de Ciencia e Innovación (Project PID2022-137350NB-I00)

    Risk and prognosis of second cutaneous melanoma after radiotherapy for breast cancer: A population-based analysis

    Get PDF
    Radiation therapy (RT), a primary treatment for breast cancer (BC), may be associated with increased non-BC tumor risk. We aimed to examine second cutaneous melanoma (SCM) risk in BC patients who underwent RT and to assess their survival outcomes. Data from 520,977 BC patients diagnosed between 1973–2018 were collected from the Surveillance, Epidemiology, and End Results (SEER) database. Cumulative SCM incidence was estimated using the Fine–Gray competing risk model. Poisson regression analysis was conducted to calculate the standardized incidence ratio (SIR) and estimate the SCM relative risk in patients who underwent RT compared to those who did not. Overall survival (OS) and cancer-specific survival (CSS) were assessed using the Kaplan‒Meier method. Among the 520,977 BC patients, 243,676 (46.8%) underwent surgery and RT, while 277,301 (53.2%) only underwent surgery. Our results suggest that BC patients receiving RT had a higher SCM risk than those who did not (hazard ratio [HR] 1.40; 95% confidence interval [CI] 1.30-1.51; P < 0.001). SCM incidence was also higher in BC patients treated with RT than in the general US population (SIR 1.12; 95% CI 1.05-1.19; P < 0.05). However, SCM patients who received RT had a significantly higher 10-year survival rate than those who did not receive RT (14.90% vs 5.94%; P < 0.001). No significant difference was found in 10-year OS or 5-year CSS between SCM following RT and only primary cutaneous melanoma (OPCM), but SCM patients who did not receive RT had a significantly lower 10-year OS, with no significant difference in CSS. This study suggests an increased SCM likelihood in BC patients due to RT, although the overall risk is minimal

    Ultrasound-Stimulated Microbubbles Enhance Radiosensitization of Nasopharyngeal Carcinoma

    Get PDF
    Background/Aims: Recent studies indicate that therapies targeting the vasculature can significantly sensitize tumors to radiation. Ultrasound-stimulated microbubbles (USMBs) are regarded as a promising radiosensitizer. In this study, we investigated the effect of USMBs on the sensitivity of nasopharyngeal carcinoma (NPC) to radiation. Methods: Human NPC (CNE-2) cells and human umbilical vein endothelial cells (HUVECs) were exposed to radiation (0, 2, and 8 Gy) alone or in combination with USMBs. Cell viability and apoptosis were measured with the MTT assay and flow cytometry, respectively. The angiogenic activity of HUVECs was detected using matrigel tubule formation. The in vitro effects induced by these treatments were confirmed in vivo with xenograft models of CNE-2 cells in nude mice by examining vascular integrity using color Doppler flow imaging and cell survival using immunohistochemistry. Additionally, the in vivo and in vitro expressions of angiotensin II (ANG II) and its receptor (AT1R) were detected by immunohistochemistry and western blotting, respectively. With CNE-2 cells and HUVECs transfected with control, ANG II, or AT1R, perindopril (an inhibitor of angiotensin-converting enzyme) and candesartan (an inhibitor of AT1R) were used to verify the role of ANG II and AT1R in the radiosensitivity of tumor and endothelial cells by USMBs, by determining cell viability and apoptosis and angiogenic activity. Results: In the NPC xenografts, USMBs slightly reduced blood flow and CD34 expression, increased tumor cell death and ANG II and AT1R expression, and significantly enhanced the effects of radiation. With CNE-2 cells and HUVECs, the USMBs further enhanced the inhibition of tumor cell viability and endothelial tubule formation and further enhanced the increase in ANG II and AT1R due to radiation. Furthermore, perindopril and candesartan significantly enhanced the inhibitory effect of radiation and USMBs on tumor cell growth and angiogenesis in vitro. Conclusions: We have demonstrated for the first time that USMB exposure can significantly enhance the destructive effect on NPC of radiation, and this effect might be further increased by ANG II and AT1R inhibition. Our findings suggest that USMBs can be used as a promising sensitizer of radiotherapy to treat NPC, and the clinical effect might be increased by ANG II and AT1R inhibition

    Exploring the shared molecular mechanism of microvascular and macrovascular complications in diabetes: Seeking the hub of circulatory system injury

    Get PDF
    BackgroundMicrovascular complications, such as diabetic retinopathy (DR) and diabetic nephropathy (DN), and macrovascular complications, referring to atherosclerosis (AS), are the main complications of diabetes. Blindness or fatal microvascular diseases are considered to be identified earlier than fatal macrovascular complications. Exploring the intrinsic relationship between microvascular and macrovascular complications and the hub of pathogenesis is of vital importance for prolonging the life span of patients with diabetes and improving the quality of life.Materials and methodsThe expression profiles of GSE28829, GSE30529, GSE146615 and GSE134998 were downloaded from the Gene Expression Omnibus database, which contained 29 atherosclerotic plaque samples, including 16 AS samples and 13 normal controls; 22 renal glomeruli and tubules samples from diabetes nephropathy including 12 DN samples and 10 normal controls; 73 lymphoblastoid cell line samples, including 52 DR samples and 21 normal controls. The microarray datasets were consolidated and DEGs were acquired and further analyzed by bioinformatics techniques including GSEA analysis, GO-KEGG functional clustering by R (version 4.0.5), PPI analysis by Cytoscape (version 3.8.2) and String database, miRNA analysis by Diana database, and hub genes analysis by Metascape database. The drug sensitivity of characteristic DEGs was analyzed.ResultA total of 3709, 4185 and 8086 DEGs were recognized in AS, DN, DR, respectively, with 1820, 1666, 888 upregulated and 1889, 2519, 7198 downregulated. GO and KEGG pathway analyses of DEGs and GSEA analysis of common differential genes demonstrated that these significant sites focused primarily on inflammation-oxidative stress and immune regulation pathways. PPI networks show the connection and regulation on top-250 significant sites of AS, DN, DR. MiRNA analysis explored the non-coding RNA upstream regulation network and significant pathway in AS, DN, DR. The joint analysis of multiple diseases shows the common influenced pathways of AS, DN, DR and explored the interaction between top-1000 DEGs at the same time.ConclusionIn the microvascular and macrovascular complications of diabetes, immune-mediated inflammatory response, chronic inflammation caused by endothelial cell activation and oxidative stress are the three links linking atherosclerosis, diabetes retinopathy and diabetes nephropathy together. Our study has clarified the intrinsic relationship and common tissue damage mechanism of microcirculation and circulatory system complications in diabetes, and explored the mechanism center of these two vascular complications. It has far-reaching clinical and social value for reducing the incidence of fatal events and early controlling the progress of disabling and fatal circulatory complications in diabetes

    A screening identifies harmine as a novel antibacterial compound against Ralstonia solanacearum

    Get PDF
    Ralstonia solanacearum, the causal agent of bacterial wilt, is a devastating plant pathogenic bacterium that infects more than 450 plant species. Until now, there has been no efficient control strategy against bacterial wilt. In this study, we screened a library of 100 plant-derived compounds for their antibacterial activity against R. solanacearum. Twelve compounds, including harmine, harmine hydrochloride, citral, vanillin, and vincamine, suppressed bacterial growth of R. solanacearum in liquid medium with an inhibition rate higher than 50%. Further focus on harmine revealed that the minimum inhibitory concentration of this compound is 120 mg/L. Treatment with 120 mg/L of harmine for 1 and 2 h killed more than 90% of bacteria. Harmine treatment suppressed the expression of the virulence-associated gene xpsR. Harmine also significantly inhibited biofilm formation by R. solanacearum at concentrations ranging from 20 mg/L to 60 mg/L. Furthermore, application of harmine effectively reduced bacterial wilt disease development in both tobacco and tomato plants. Collectively, our results demonstrate the great potential of plant-derived compounds as antibacterial agents against R. solanacearum, providing alternative ways for the efficient control of bacterial wilt

    Ultra-broadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab

    Get PDF
    We present an ultra broadband thin-film infrared absorber made of saw-toothed anisotropic metamaterial. Absorbtivity of higher than 95% at normal incidence is supported in a wide range of frequencies, where the full absorption width at half maximum is about 86%. Such property is retained well at a very wide range of incident angles too. Light of shorter wavelengths are harvested at upper parts of the sawteeth of smaller widths, while light of longer wavelengths are trapped at lower parts of larger tooth widths. This phenomenon is explained by the slowlight modes in anisotropic metamaterial waveguide. Our study can be applied in the field of designing photovoltaic devices and thermal emitters.Comment: 12 pages, 4 picture
    • …
    corecore