49 research outputs found

    UPPRESSO: Untraceable and Unlinkable Privacy-PREserving Single Sign-On Services

    Full text link
    Single sign-on (SSO) allows a user to maintain only the credential at the identity provider (IdP), to login to numerous RPs. However, SSO introduces extra privacy threats, compared with traditional authentication mechanisms, as (a) the IdP could track all RPs which a user is visiting, and (b) collusive RPs could learn a user's online profile by linking his identities across these RPs. This paper proposes a privacypreserving SSO system, called UPPRESSO, to protect a user's login activities against both the curious IdP and collusive RPs. We analyze the identity dilemma between the security requirements and these privacy concerns, and convert the SSO privacy problems into an identity transformation challenge. In each login instance, an ephemeral pseudo-identity (denoted as PID_RP ) of the RP, is firstly negotiated between the user and the RP. PID_RP is sent to the IdP and designated in the identity token, so the IdP is not aware of the visited RP. Meanwhile, PID_RP is used by the IdP to transform the permanent user identity ID_U into an ephemeral user pseudo-identity (denoted as PID_U ) in the identity token. On receiving the identity token, the RP transforms PID_U into a permanent account (denoted as Acct) of the user, by an ephemeral trapdoor in the negotiation. Given a user, the account at each RP is unique and different from ID_U, so collusive RPs cannot link his identities across these RPs. We build the UPPRESSO prototype on top of MITREid Connect, an open-source implementation of OIDC. The extensive evaluation shows that UPPRESSO fulfills the requirements of both security and privacy and introduces reasonable overheads

    Effects of fermentation medium on cigar filler

    Get PDF
    The addition of medium during industrial fermentation can improve the quality of cigar tobacco leaves after agricultural fermentation. In this study, the cigar filler tobacco “Brazilian Frogstrips YA14” was used as the test material to determine the contents of main chemical components in cigar tobacco leaves after fermentations with the additions of water (control group) and a medium (test group), and the changes in the community structure and abundances of bacteria on tobacco leaves during the fermentation process were analyzed. The results of the study were as follows: 1) During the fermentation process, the protein content of tobacco leaves fluctuated slightly, basically stabilized at 19%–20%. 2) Under the impact of the medium, the total content of main amino acids in tobacco leaves showed a downward trend, and the difference of which between the control group and the test group was the most obvious on the fourth day of fermentation. 3) The change trend of the content of petroleum ether extract in cigar leaves for the control group was not obvious, and the content of petroleum ether extract in the tobacco leaves for the test group decreased by 12.4% under the impact of the medium. 4) After fermentation, the relative content of saturated fatty acids for the control group and the test group all increased, while the relative content of unsaturated fatty acids all decreased. 5) After the addition of the medium, the diversity of bacteria on tobacco leaves changed significantly, the number of OTUs in tobacco leaves increased, and the bacterial community structure changed. This research indicates that after adding the medium to ferment cigar filler, the changes of bacterial community and dominant bacterial group on cigar tobacco leaves have impacts on the contents of chemical components in tobacco leaves, and the fermentation with the addition of medium has a positive effect on improving the quality of tobacco leaves

    Effects of a novel microbial fermentation medium produced by Tremella aurantialba SCT-F3 on cigar filler leaf

    Get PDF
    IntroductionAdding a fermentation medium is an effective way to improve the quality of cigar tobacco leaves.MethodsA novel microbial fermentation medium produced by an edible medicinal fungus, Tremella aurantialba SCT-F3 (CGMCC No.23831) was used to improve the quality of cigar filler leaves (CFLs). Changes in sensory quality, chemical components, volatile flavor compounds (VFCs), and the structure and function of microbes were investigated during the fermentation process.ResultsThe sensory quality of CFLs supplemented with the T. aurantialba SCT-F3 fermentation medium significantly improved. Adding the fermentation medium increased the total alkaloid, reducing sugar, total sugar, and 12 VFCs significantly. A total of 31 microbial genera were significantly enriched, which increased the microbial community’s richness and diversity. Microbial functions increased, including nucleotide biosynthesis, amino acid biosynthesis, fatty acid and lipid biosynthesis, nicotine degradation, and nicotinate degradation. During fermentation, the total alkaloid, reducing sugar, and total sugar content decreased. The richness and diversity of the microbial community decreased, whereas bacterial enzyme activity increased. At the end of fermentation, the sensory quality was excellent. The microbial structure gradually stabilized, and functional genes were low. The contents of the four Maillard reaction products and three nicotine degradation products increased significantly. 2-Ethyl-6-methylpyrazine, methylpyrazine, D,L-anatabine, β-nicotyrine, nicotinic degradation products, and total nitrogen were significantly and positively correlated with sensory quality. Methylpyrazine, D,L-anatabine, and β-nicotyrine were negatively correlated with Luteimonas, Mitochondria, Paracoccus, Stemphylium, and Stenotrophomonas.ConclusionThis research provides not only a new microbial fermentation medium that utilizes edible and medicinal fungi to improve the quality of fermented CFLs, but also new ideas for the development and application of other edible medicinal fungi to improve the quality of cigar tobacco leaves

    Remodelin delays non‐small cell lung cancer progression by inhibiting NAT10 via the EMT pathway

    No full text
    Abstract Background Lung cancer remains the foremost reason of cancer‐related mortality, with invasion and metastasis profoundly influencing patient prognosis. N‐acetyltransferase 10 (NAT10) catalyzes the exclusive N (4)‐acetylcytidine (ac4C) modification in eukaryotic RNA. NAT10 dysregulation is linked to various diseases, yet its role in non‐small cell lung cancer (NSCLC) invasion and metastasis remains unclear. Our study delves into the clinical significance and functional aspects of NAT10 in NSCLC. Methods We investigated NAT10's clinical relevance using The Cancer Genome Atlas (TCGA) and a group of 98 NSCLC patients. Employing WB, qRT‐PCR, and IHC analyses, we assessed NAT10 expression in NSCLC tissues, bronchial epithelial cells (BECs), NSCLC cell lines, and mouse xenografts. Further, knockdown and overexpression techniques (siRNA, shRNA, and plasmid) were employed to evaluate NAT10's effects. A series of assays were carried out, including CCK‐8, colony formation, wound healing, and transwell assays, to elucidate NAT10's role in proliferation, invasion, and metastasis. Additionally, we utilized lung cancer patient‐derived 3D organoids, mouse xenograft models, and Remodelin (NAT10 inhibitor) to corroborate these findings. Results Our investigations revealed high NAT10 expression in NSCLC tissues, cell lines and mouse xenograft models. High NAT10 level correlated with advanced T stage, lymph node metastasis and poor overall survive. NAT10 knockdown curtailed proliferation, invasion, and migration, whereas NAT10 overexpression yielded contrary effects. Furthermore, diminished NAT10 levels correlated with increased E‐cadherin level whereas decreased N‐cadherin and vimentin expressions, while heightened NAT10 expression displayed contrasting results. Notably, Remodelin efficiently attenuated NSCLC proliferation, invasion, and migration by inhibiting NAT10 through the epithelial‐mesenchymal transition (EMT) pathway. Conclusions Our data underscore NAT10 as a potential therapeutic target for NSCLC, presenting avenues for targeted intervention against lung cancer through NAT10 inhibition

    HEDD: Human Enhancer Disease Database

    No full text

    Integrated rare variant-based risk gene prioritization in disease case-control sequencing studies

    No full text
    <div><p>Rare variants of major effect play an important role in human complex diseases and can be discovered by sequencing-based genome-wide association studies. Here, we introduce an integrated approach that combines the rare variant association test with gene network and phenotype information to identify risk genes implicated by rare variants for human complex diseases. Our data integration method follows a 'discovery-driven' strategy without relying on prior knowledge about the disease and thus maintains the unbiased character of genome-wide association studies. Simulations reveal that our method can outperform a widely-used rare variant association test method by 2 to 3 times. In a case study of a small disease cohort, we uncovered putative risk genes and the corresponding rare variants that may act as genetic modifiers of congenital heart disease in 22q11.2 deletion syndrome patients. These variants were missed by a conventional approach that relied on the rare variant association test alone.</p></div

    Overview of the IGSP strategy.

    No full text
    <p>(A) The schematic view of IGSP. IGSP scores genes by integrating initial gene association signals with available gene network and mouse knock-out phenotype information. Sequencing data represented the primary data for investigation. Gene network and phenotype data were used to support this data and were not specific to any disease. For phenotype characteristics of genes, different symbols represent different principal components from MGI phenotype annotation (see <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1007142#sec008" target="_blank">Methods</a>), and the color represents the values of principal components; color of black to purple represents small to large values. (B) The gene network and phenotype properties of risk genes. We hypothesize that risk genes for the disease in the study cohort tend to lie close to each other in a co-function gene network [<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1007142#pgen.1007142.ref017" target="_blank">17</a>] (see <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1007142#sec008" target="_blank">Methods</a>) and their orthologs in mice tend to influence similar mouse knock-out phenotypes. PC denotes principal components; red dots represent risk genes while grey dots represent non-risk genes (see <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1007142#pgen.1007142.s002" target="_blank">S2 Fig</a>).</p
    corecore