20 research outputs found

    A Deep Reinforcement Learning Framework for Rebalancing Dockless Bike Sharing Systems

    Full text link
    Bike sharing provides an environment-friendly way for traveling and is booming all over the world. Yet, due to the high similarity of user travel patterns, the bike imbalance problem constantly occurs, especially for dockless bike sharing systems, causing significant impact on service quality and company revenue. Thus, it has become a critical task for bike sharing systems to resolve such imbalance efficiently. In this paper, we propose a novel deep reinforcement learning framework for incentivizing users to rebalance such systems. We model the problem as a Markov decision process and take both spatial and temporal features into consideration. We develop a novel deep reinforcement learning algorithm called Hierarchical Reinforcement Pricing (HRP), which builds upon the Deep Deterministic Policy Gradient algorithm. Different from existing methods that often ignore spatial information and rely heavily on accurate prediction, HRP captures both spatial and temporal dependencies using a divide-and-conquer structure with an embedded localized module. We conduct extensive experiments to evaluate HRP, based on a dataset from Mobike, a major Chinese dockless bike sharing company. Results show that HRP performs close to the 24-timeslot look-ahead optimization, and outperforms state-of-the-art methods in both service level and bike distribution. It also transfers well when applied to unseen areas

    Deterministic Value-Policy Gradients

    Full text link
    Reinforcement learning algorithms such as the deep deterministic policy gradient algorithm (DDPG) has been widely used in continuous control tasks. However, the model-free DDPG algorithm suffers from high sample complexity. In this paper we consider the deterministic value gradients to improve the sample efficiency of deep reinforcement learning algorithms. Previous works consider deterministic value gradients with the finite horizon, but it is too myopic compared with infinite horizon. We firstly give a theoretical guarantee of the existence of the value gradients in this infinite setting. Based on this theoretical guarantee, we propose a class of the deterministic value gradient algorithm (DVG) with infinite horizon, and different rollout steps of the analytical gradients by the learned model trade off between the variance of the value gradients and the model bias. Furthermore, to better combine the model-based deterministic value gradient estimators with the model-free deterministic policy gradient estimator, we propose the deterministic value-policy gradient (DVPG) algorithm. We finally conduct extensive experiments comparing DVPG with state-of-the-art methods on several standard continuous control benchmarks. Results demonstrate that DVPG substantially outperforms other baselines

    Reinforcement Mechanism Design for E-Commerce

    Get PDF
    We study the problem of allocating impressions to sellers in e-commerce websites, such as Amazon, eBay or Taobao, aiming to maximize the total revenue generated by the platform. We employ a general framework of reinforcement mechanism design, which uses deep reinforcement learning to design efficient algorithms, taking the strategic behaviour of the sellers into account. Specifically, we model the impression allocation problem as a Markov decision process, where the states encode the history of impressions, prices, transactions and generated revenue and the actions are the possible impression allocations in each round. To tackle the problem of continuity and high-dimensionality of states and actions, we adopt the ideas of the DDPG algorithm to design an actor-critic policy gradient algorithm which takes advantage of the problem domain in order to achieve convergence and stability. We evaluate our proposed algorithm, coined IA(GRU), by comparing it against DDPG, as well as several natural heuristics, under different rationality models for the sellers - we assume that sellers follow well-known no-regret type strategies which may vary in their degree of sophistication. We find that IA(GRU) outperforms all algorithms in terms of the total revenue
    corecore