32,889 research outputs found

    The ping-pong protocol can be attacked without eavesdropping

    Full text link
    Attack the ping-pong protocol without eavesdropping.Comment: PACS: 03.67.H

    Phase-reference VLBI Observations of the Compact Steep-Spectrum Source 3C 138

    Full text link
    We investigate a phase-reference VLBI observation that was conducted at 15.4 GHz by fast switching VLBA antennas between the compact steep-spectrum radio source 3C 138 and the quasar PKS 0528+134 which are about 4^\circ away on the sky. By comparing the phase-reference mapping with the conventional hybrid mapping, we demonstrate the feasibility of high precision astrometric measurements for sources separated by 4^\circ. VLBI phase-reference mapping preserves the relative phase information, and thus provides an accurate relative position between 3C 138 and PKS 0528+134 of Δα=9m46s.531000±0s.000003\Delta\alpha=-9^m46^s.531000\pm0^s.000003 and Δδ=3626.90311±0.00007\Delta\delta=3^\circ6^\prime26^{\prime\prime}.90311\pm0^{\prime\prime}.00007 (J2000.0) in right ascension and declination, respectively. This gives an improved position of the nucleus (component A) of 3C 138 in J2000.0 to be RA=05h21m9s.88574805^h 21^m 9^s.885748 and Dec=163822.0526116^\circ 38' 22''.05261 under the assumption that the position of calibrator PKS 0528+134 is correct. We further made a hybrid map by performing several iterations of CLEAN and self-calibration on the phase-referenced data with the phase-reference map as an input model for the first phase self-calibration. Compared with the hybrid map from the limited visibility data directly obtained from fringe fitting 3C 138 data, this map has a similar dynamic range, but a higher angular resolution. Therefore, phase-reference technique is not only a means of phase connection, but also a means of increasing phase coherence time allowing self-calibration technique to be applied to much weaker sources.Comment: 9 pages plus 2 figures, accepted by PASJ (Vol.58 No.6

    What can we learn from Ba1(1260)(b1(1235))π(K)B\to a_1(1260)(b_1(1235))\pi(K) decays?

    Full text link
    We investigate the Ba1(1260)(b1(1235))π(K)B\to a_1(1260)(b_1(1235))\pi(K) decays under the factorization scheme and find many discrepancies between theoretical predictions and the experimental data. In the tree dominated processes, large contributions from color-suppressed tree diagrams are required in order to accommodate with the large decay rates of Ba10πB^-\to a_1^0\pi^- and Ba1π0B^-\to a_1^-\pi^0. For Bˉ0(a1+,b1+)K\bar B^0\to (a_1^+, b_1^+)K^- decays which are both induced by bsb\to s transition, theoretical predictions on their decay rates are larger than the data by a factor of 2.8 and 5.5, respectively. Large electro-weak penguins or some new mechanism are expected to explain the branching ratios of Bb10KB^-\to b_1^0K^- and Ba1Kˉ0B^-\to a_1^-\bar K^0. The soft-collinear-effective-theory has the potential to explain large decay rates of Ba10πB^-\to a_1^0\pi^- and Ba1π0B^-\to a_1^-\pi^0 via a large hard-scattering form factor ζJBa1\zeta_J^{B\to a_1}. We will also show that, with proper charming penguins, predictions on the branching ratios of Bˉ0(a1+,b1+)K\bar B^0\to (a_1^+, b_1^+)K^- can also be consistent with the data.Comment: 16 pages, no figur

    Dynamic entanglement in oscillating molecules and potential biological implications

    Full text link
    We demonstrate that entanglement can persistently recur in an oscillating two-spin molecule that is coupled to a hot and noisy environment, in which no static entanglement can survive. The system represents a non-equilibrium quantum system which, driven through the oscillatory motion, is prevented from reaching its (separable) thermal equilibrium state. Environmental noise, together with the driven motion, plays a constructive role by periodically resetting the system, even though it will destroy entanglement as usual. As a building block, the present simple mechanism supports the perspective that entanglement can exist also in systems which are exposed to a hot environment and to high levels of de-coherence, which we expect e.g. for biological systems. Our results furthermore suggest that entanglement plays a role in the heat exchange between molecular machines and environment. Experimental simulation of our model with trapped ions is within reach of the current state-of-the-art quantum technologies.Comment: Extended version, including supplementary information. 9 pages, 8 figure

    Nonorthogonal decoy-state Quantum Key Distribution

    Full text link
    In practical quantum key distribution (QKD), weak coherent states as the photon sources have a limit in secure key rate and transmission distance because of the existence of multiphoton pulses and heavy loss in transmission line. Decoy states method and nonorthogonal encoding protocol are two important weapons to combat these effects. Here, we combine these two methods and propose a efficient method that can substantially improve the performance of QKD. We find a 79 km increase in transmission distance over the prior record using decoy states method.Comment: 4 pages, 1 figure; Revtex4, submitted to PR

    Charmless Two-body B(Bs)VPB(B_s)\to VP decays In Soft-Collinear-Effective-Theory

    Full text link
    We provide the analysis of charmless two-body BVPB\to VP decays under the framework of the soft-collinear-effective-theory (SCET), where V(P)V(P) denotes a light vector (pseudoscalar) meson. Besides the leading power contributions, some power corrections (chiraly enhanced penguins) are also taken into account. Using the current available BPPB\to PP and BVPB\to VP experimental data on branching fractions and CP asymmetry variables, we find two kinds of solutions in χ2\chi^2 fit for the 16 non-perturbative inputs which are essential in the 87 BPPB\to PP and BVPB\to VP decay channels. Chiraly enhanced penguins can change several charming penguins sizably, since they share the same topology. However, most of the other non-perturbative inputs and predictions on branching ratios and CP asymmetries are not changed too much. With the two sets of inputs, we predict the branching fractions and CP asymmetries of other modes especially BsVPB_s\to VP decays. The agreements and differences with results in QCD factorization and perturbative QCD approach are analyzed. We also study the time-dependent CP asymmetries in channels with CP eigenstates in the final states and some other channels such as Bˉ0/B0π±ρ\bar B^0/B^0\to\pi^\pm\rho^\mp and Bˉs0/Bs0K±K\bar B_s^0/B_s^0\to K^\pm K^{*\mp}. In the perturbative QCD approach, the (SP)(S+P)(S-P)(S+P) penguins in annihilation diagrams play an important role. Although they have the same topology with charming penguins in SCET, there are many differences between the two objects in weak phases, magnitudes, strong phases and factorization properties.Comment: 34 pages, revtex, 2 figures, published at PR

    Multi-epoch VLBA observations of 3C 66A

    Full text link
    We present the results of six-epoch Very Long Baseline Array (VLBA) observations of 3C~66A. The high-resolution Very Long Baseline Interferometer (VLBI) maps obtained at multi-frequency (2.3, 8.4, and 22.2 GHz) simultaneously enabled us to identify the brightest compact component with the core. We find that the spectrum of the core can be reasonably fitted by the synchrotron self-absorption model. Our VLBA maps show that the jet of 3C~66A has two bendings at about 1.2 and 4 mas from the core. We also give possible identifications of our jet components with the components in previous VLBA observations by analysing their proper motions. We find consistent differences of the position from the core in one component between different frequencies at six epochs.Comment: 10 pages, 5 figures, received 30 January 2007, accepted 22 March 200

    Late acceleration and w=1w=-1 crossing in induced gravity

    Full text link
    We study the cosmological evolution on a brane with induced gravity within a bulk with arbitrary matter content. We consider a Friedmann-Robertson-Walker brane, invariantly characterized by a six-dimensional group of isometries. We derive the effective Friedmann and Raychaudhuri equations. We show that the Hubble expansion rate on the brane depends on the covariantly defined integrated mass in the bulk, which determines the energy density of the generalized dark radiation. The Friedmann equation has two branches, distinguished by the two possible values of the parameter \ex=\pm 1. The branch with \ex=1 is characterized by an effective cosmological constant and accelerated expansion for low energy densities. Another remarkable feature is that the contribution from the generalized dark radiation appears with a negative sign. As a result, the presence of the bulk corresponds to an effective negative energy density on the brane, without violation of the weak energy condition. The transition from a period of domination of the matter energy density by non-relativistic brane matter to domination by the generalized dark radiation corresponds to a crossing of the phantom divide w=1w=-1.Comment: 7 pages, no figures, RevTex 4.0; (v2) new references are added, minor corrections and expanded discussion; (v3) additional comments at the end of section III, minor corrections and several new references are added, to match published version in Phys. Rev.
    corecore