35 research outputs found

    Image Analysis for Plant Phenotyping

    No full text
    Plant phenotyping focuses on the measurement of plant characteristics throughout the growing season, typically with the goal of evaluating genotypes for plant breeding and management practices related to nutrient applications. Estimating plant characteristics is important for finding the relationship between the plant’s genetic data and observable traits, which is also related to the environment and management practices. Recent machine learning approaches provide promising capabilities for high-throughput plant phenotyping using images. In this thesis, we focus on estimating plant traits for a field-based crop using images captured by Unmanned Aerial Vehicles (UAVs). We propose a method for estimating plant centers by transferring an existing model to a new scenario using limited ground truth data. We describe the use of transfer learning using a model fine-tuned for a single field or a single type of plant on a varied set of similar crops and fields. We introduce a method for rapidly counting panicles using images acquired by UAVs. We evaluate three different deep neural network structures for panicle counting and location. We propose a method for sorghum flowering time estimation using multi-temporal panicle counting. We present an approach that uses synthetic training images from generative adversarial networks for data augmentation to enhance the performance of sorghum panicle detection and counting. We reduce the amount of training data for sorghum panicle detection via semi-supervised learning. We create synthetic sorghum and maize images using diffusion models. We propose a method for tomato plant segmentation by color correction and color space conversion. We also introduce the methods for detecting and classifying bacterial tomato wilting from images

    Semi-Supervised Object Detection for Sorghum Panicles in UAV Imagery

    Full text link
    The sorghum panicle is an important trait related to grain yield and plant development. Detecting and counting sorghum panicles can provide significant information for plant phenotyping. Current deep-learning-based object detection methods for panicles require a large amount of training data. The data labeling is time-consuming and not feasible for real application. In this paper, we present an approach to reduce the amount of training data for sorghum panicle detection via semi-supervised learning. Results show we can achieve similar performance as supervised methods for sorghum panicle detection by only using 10\% of original training data

    Anisotropic Composition and Mechanical Behavior of a Natural Thin-Walled Composite: Eagle Feather Shaft

    No full text
    Flight feather shafts are outstanding bioinspiration templates due to their unique light weight and their stiff and strong characteristics. As a thin wall of a natural composite beam, the keratinous cortex has evolved anisotropic features to support flight. Here, the anisotropic keratin composition, tensile response, dynamic properties of the cortex, and fracture behaviors of the shafts are clarified. The analysis of Fourier transform infrared (FTIR) spectra indicates that the protein composition of calamus cortex is almost homogeneous. In the middle and distal shafts (rachis), the content of the hydrogen bonds (HBs) and side-chain is the highest within the dorsal cortex and is consistently lower within the lateral wall. The tensile responses, including the properties and dominant damage pattern, are correlated with keratin composition and fiber orientation in the cortex. As for dynamic properties, the storage modulus and damping of the cortex are also anisotropic, corresponding to variation in protein composition and fibrous structure. The fracture behaviors of bent shafts include matrix breakage, fiber dissociation and fiber rupture on compressive dorsal cortex. To clarify, ‘real-time’ damage behaviors, and an integrated analysis between AE signals and fracture morphologies, are performed, indicating that calamus failure results from a straight buckling crack and final fiber rupture. Moreover, in the dorsal and lateral walls of rachis, the matrix breakage initially occurs, and then the propagation of the crack is restrained by ‘ligament-like’ fiber bundles and cross fiber, respectively. Subsequently, the further matrix breakage, interface dissociation and induced fiber rupture in the dorsal cortex result in the final failure

    Characteristics of Heterotrophic Nitrifying and Aerobic Denitrifying Arthrobacter nicotianae D51 Strain in the Presence of Copper

    No full text
    A heterotrophic nitrification and aerobic denitrification bacterium, strain D51, was identified as Arthrobacter nicotianae based on morphological, phospholipid fatty acids (PLFAs), and 16S rRNA gene sequence analyses. Further tests demonstrated that strain D51 had the capability to use nitrite, nitrate, or ammonium as the sole nitrogen source in the presence of Cu2+. The maximum removal efficiencies of nitrite, nitrate and ammonium were 68.97%, 78.32%, and 98.70%, respectively. Additionally, the maximum growth rate and denitrification capacity of this strain occurred in the presence of 0.05 mg L -1 of Cu2+.However, the growth and aerobic denitrification capacity were intensively inhibited by Cu2+ at 0.1 mg L -1. Moreover, gas chromatography indicated that a portion of the nitrogen was transformed into N2O when the nitrite, nitrate, and ammonium were separately used as the sole nitrogen source. This is the first study of the nitrification and denitrification ability of Arthrobacter nicotianae under aerobic conditions, and the first experiment to investigate the impact of Cu2+ concentration on the growth and denitrification ability of this bacteria. The results presented herein extend the known varieties of heterotrophic nitrifying-aerobic denitrifying bacteria and provide useful information regarding the specific bacteria for nitrogen bioremediation of industrial wastewater containing Cu2+

    Image-based plant wilting estimation

    No full text
    Abstract Background Environmental stress due to climate or pathogens is a major threat to modern agriculture. Plant genetic resistance to these stresses is one way to develop more resilient crops, but accurately quantifying plant phenotypic responses can be challenging. Here we develop and test a set of metrics to quantify plant wilting, which can occur in response to abiotic stress such as heat or drought, or in response to biotic stress caused by pathogenic microbes. These metrics can be useful in genomic studies to identify genes and genomic regions underlying plant resistance to a given stress. Results We use two datasets: one of tomatoes inoculated with Ralstonia solanacearum, a soilborne pathogen that causes bacterial wilt disease, and another of soybeans exposed to water stress. For both tomato and soybean, the metrics predict the visual wilting score provided by human experts. Specific to the tomato dataset, we demonstrate that our metrics can capture the genetic difference of bacterium wilt resistance among resistant and susceptible tomato genotypes. In soybean, we show that our metrics can capture the effect of water stress. Conclusion Our proposed RGB image-based wilting metrics can be useful for identifying plant wilting caused by diverse stresses in different plant species

    Infrared spectra peak fitting results before and after acidification.

    No full text
    (a) Absorption peaks of aromatic structures before and after acidification. (b) Absorption peaks of oxygen-containing functional group structures before and after acidification. (c) Absorption peaks of aliphatic hydrocarbon structures before and after acidification. (d) Absorption peak fitting of hydroxyl structures before and after acidification.</p

    Acid preparation process.

    No full text
    The chemical and pore structures of coal play a crucial role in determining the content of free gas in coal reservoirs. This study focuses on investigating the impact of acidification transformation on the micro-physical and chemical structure characteristics of coal samples collected from Wenjiaba No. 1 Mine in Guizhou. The research involves a semi-quantitative analysis of the chemical structure parameters and crystal structure of coal samples before and after acidification using Fourier Transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) experiments. Additionally, the evolution characteristics of the pore structure are characterized through high-pressure mercury injection (HP-MIP), low-temperature nitrogen adsorption (LT-N2A), and scanning electron microscopy (SEM). The experimental findings reveal that the acid solution modifies the structural features of coal samples, weakening certain vibrational structures and altering the chemical composition. Specifically, the asymmetric vibration structure of aliphatic CH2, the asymmetric vibration of aliphatic CH3, and the symmetric vibration of CH2 are affected. This leads to a decrease in the contents of -OH and -NH functional groups while increasing aromatic structures. The crystal structure of coal samples primarily dissolves transversely after acidification, affecting intergranular spacing and average height. Acid treatment corrodes mineral particles within coal sample cracks, augmenting porosity, average pore diameter, and the ratio of macro-pores to transitional pores. Moreover, acidification increases fracture width and texture, enhancing the connectivity of the fracture structure in coal samples. These findings provide theoretical insights for optimizing coalbed methane (CBM) extraction and gas control strategies.</div
    corecore