3,843 research outputs found

    Switching and Rectification of a Single Light-sensitive Diarylethene Molecule Sandwiched between Graphene Nanoribbons

    Full text link
    The 'open' and 'closed' isomers of the diarylethene molecule that can be converted between each other upon photo-excitation are found to have drastically different current-voltage characteristics when sandwiched between two graphene nanoribbons (GNRs). More importantly, when one GNR is metallic and another one is semiconducting, strong rectification behavior of the 'closed' diarylethene isomer with the rectification ratio >10^3 is observed. The surprisingly high rectification ratio originates from the band gap of GNR and the bias-dependent variation of the lowest unoccupied molecular orbital (LUMO) of the diarylethene molecule, the combination of which completely shuts off the current at positive biases. Results presented in this paper may form the basis for a new class of molecular electronic devices.Comment: The Journal of Chemical Physics 135 (2011

    Shear Viscosity of Uniform Fermi Gases with Population Imbalance

    Full text link
    The shear viscosity plays an important role in studies of transport phenomena in ultracold Fermi gases and serves as a diagnostic of various microscopic theories. Due to the complicated phase structures of population-imbalanced Fermi gases, past works mainly focus on unpolarized Fermi gases. Here we investigate the shear viscosity of homogeneous, population-imbalanced Fermi gases with tunable attractive interactions at finite temperatures by using a pairing fluctuation theory for thermodynamical quantities and a gauge-invariant linear response theory for transport coefficients. In the unitary and BEC regimes, the shear viscosity increases with the polarization because the excess majority fermions cause gapless excitations acting like a normal fluid. In the weak BEC regime the excess fermions also suppress the noncondensed pairs at low polarization, and we found a minimum in the ratio of shear viscosity and relaxation time. To help constrain the relaxation time from linear response theory, we derive an exact relation connecting some thermodynamic quantities and transport coefficients at the mean-field level for unitary Fermi superfluids with population imbalance. An approximate relation beyond mean-field theory is proposed and only exhibits mild deviations from numerical results.Comment: 11 pages, 4 figure

    Dielectric properties and lattice dynamics of alpha-PbO2-type TiO2: The role of soft phonon modes in pressure-induced phase transition to baddeleyite-type TiO2

    Full text link
    Dielectric tensor and lattice dynamics of alpha-PbO2-type TiO2 have been investigated using the density functional perturbation theory, with a focus on responses of the vibrational frequencies to pressure. The calculated Raman spectra under different pressures are in good agreement with available experimental results and the symmetry assignments of the Raman peaks of alpha-PbO2-type TiO2 are given for the first time. In addition, we identified two anomalously IR-active soft phonon modes, B1u and B3u, respectively, around 200 cm-1 which have not been observed in high pressure experiments. Comparison of the phonon dispersions at 0 and 10 GPa reveals that softening of phonon modes also occurs for the zone-boundary modes. The B1u and B3u modes play an important role in transformation from the alpha-PbO2-type phase to baddeleyite phase. The significant relaxations of the oxygen atoms from the Ti4 plane in the Ti2O2Ti2 complex of the baddeleyite phase are directly correlated to the oxygen displacements along the directions given by the eigenvectors of the soft B1u and B3u modes in the alpha-PbO2-type phase.Comment: 8 pages, 9 figure
    corecore