26,565 research outputs found
Gap opening in the zeroth Landau level in gapped graphene: Pseudo-Zeeman splitting in an angular magnetic field
We present a theoretical study of gap opening in the zeroth Landau level in
gapped graphene as a result of pseudo-Zeeman interaction. The applied magnetic
field couples with the valley pseudospin degree of freedom of the charge
carriers leading to the pseudo-Zeeman interaction. To investigate its role in
transport at the Charge Neutrality Point (CNP), we study the integer quantum
Hall effect (QHE) in gapped graphene in an angular magnetic field in the
presence of pseudo-Zeeman interaction. Analytical expressions are derived for
the Hall conductivity using Kubo-Greenwood formula. We also determine the
longitudinal conductivity for elastic impurity scattering in the first Born
approximation. We show that pseudo-Zeeman splitting leads to a minimum in the
collisional conductivity at high magnetic fields and a zero plateau in the Hall
conductivity. Evidence for activated transport at CNP is found from the
temperature dependence of the collisional conductivity.Comment: 20 pages, 4 figures, Accepted in J. Phys. Condensed matte
Influence of low-level Pr substitution on the superconducting properties of YBa2Cu3O7-delta single crystals
We report on measurements on Y1-xPrxBa2Cu3O7-delta single crystals, with x
varying from 0 to 2.4%. The upper and the lower critical fields, Hc2 and Hc1,
the Ginzburg-Landau parameter and the critical current density, Jc(B), were
determined from magnetization measurements and the effective media approach
scaling method. We present the influence of Pr substitution on the pinning
force density as well as on the trapped field profiles analyzed by Hall probe
scanning.Comment: 4 pages, 5 figures, accepted for publication in J. Phys. Conf. Se
STEPS - an approach for human mobility modeling
In this paper we introduce Spatio-TEmporal Parametric Stepping (STEPS) - a simple parametric mobility model which can cover a large spectrum of human mobility patterns. STEPS makes abstraction of spatio-temporal preferences in human mobility by using a power law to rule the nodes movement. Nodes in STEPS have preferential attachment to favorite locations where they spend most of their time. Via simulations, we show that STEPS is able, not only to express the peer to peer properties such as inter-ontact/contact time and to reflect accurately realistic routing performance, but also to express the structural properties of the underlying interaction graph such as small-world phenomenon. Moreover, STEPS is easy to implement, exible to configure and also theoretically tractable
Finite-size effects on the magnetoelectric response of field-driven ferroelectric/ferromagnetic chains
We study theoretically the coupled multiferroic dynamics of one-dimensional
ferroelectric/ferromagnet chains driven by harmonic magnetic and electric
fields as a function of the chain length. A linear magnetoelectric coupling is
dominated by the spin-polarized screening charge at the interface. We performed
Monte-Carlo simulations and calculations based on the coupled
Landau-Lifshitz-Gilbert and Landau-Khalatnikov equations showing that the net
magnetization and the total polarization of thin heterostructures, i.e. with up
to ten ferroelectric and ferromagnetic sites counted from the interface, can be
completely reversed by external electric and magnetic fields, respectively.
However, for larger system solely a certain magnetoelectrical control can be
achieved.Comment: J. Phys.: Conf. Series. (2011) (to be published
Effective Area-Elasticity and Tension of Micro-manipulated Membranes
We evaluate the effective Hamiltonian governing, at the optically resolved
scale, the elastic properties of micro-manipulated membranes. We identify
floppy, entropic-tense and stretched-tense regimes, representing different
behaviors of the effective area-elasticity of the membrane. The corresponding
effective tension depends on the microscopic parameters (total area, bending
rigidity) and on the optically visible area, which is controlled by the imposed
external constraints. We successfully compare our predictions with recent data
on micropipette experiments.Comment: To be published in Phys. Rev. Let
Massless scalar fields and topological black holes
The exact static solutions in the higher dimensional Einstein-Maxwell-Klein-
Gordon theory are investigated. With the help of the methods developed for the
effective dilaton type gauge gravity models in two dimensions, we find new
spherically and hyperbolically symmetric solutions which generalize the four
dimensional configurations of Dereli-Eris. We show that, like in four
dimensions, the non-trivial scalar field yields, in general, a naked
singularity. The new solutions are compared with the higher dimensional
Brans-Dicke black hole type solutions.Comment: 15 pages, LATEX, no figures. (To appear in Phys. Rev. D
General Relativistic Contributions in Transformation Optics
One potentially realistic specification for devices designed with
transformation optics is that they operate with high precision in curved
space-time, such as Earth orbit. This raises the question of what, if any, role
does space-time curvature play in determining transformation media?
Transformation optics has been based on a three-vector representation of
Maxwell's equations in flat Minkowski space-time. I discuss a completely
covariant, manifestly four-dimensional approach that enables transformations in
arbitrary space-times, and demonstrate this approach for stable circular orbits
in the spherically symmetric Schwarzschild geometry. Finally, I estimate the
magnitude of curvature induced contributions to satellite-borne transformation
media in Earth orbit and comment on the level of precision required for
metamaterial fabrication before such contributions become important.Comment: 14 pages, 3 figures. Latest version has expanded analysis,
corresponds to published versio
On the topology and area of higher dimensional black holes
Over the past decade there has been an increasing interest in the study of
black holes, and related objects, in higher (and lower) dimensions, motivated
to a large extent by developments in string theory. The aim of the present
paper is to obtain higher dimensional analogues of some well known results for
black holes in 3+1 dimensions. More precisely, we obtain extensions to higher
dimensions of Hawking's black hole topology theorem for asymptotically flat
() black hole spacetimes, and Gibbons' and Woolgar's genus
dependent, lower entropy bound for topological black holes in asymptotically
locally anti-de Sitter () spacetimes. In higher dimensions the genus
is replaced by the so-called -constant, or Yamabe invariant, which is a
fundamental topological invariant of smooth compact manifolds.Comment: 15 pages, Latex2e; typos corrected, a convention clarified, resulting
in the simplification of certain formulas, other improvement
Examining exotic structure of proton-rich nucleus Al
The longitudinal momentum distribution (P_{//}) of fragments after one-proton
removal from ^{23} Al and reaction cross sections (\sigma_R) for
^{23,24} Al on carbon target at 74A MeV have been measured. The ^{23,24} Al
ions were produced through projectile fragmentation of 135 A MeV ^{28} Si
primary beam using RIPS fragment separator at RIKEN. P_{//} is measured by a
direct time-of-flight (TOF) technique, while \sigma_R is determined using a
transmission method. An enhancement in \sigma_R is observed for ^{23} Al
compared with ^{24} Al. The P_{//} for ^{22} Mg fragments from ^{23} Al breakup
has been obtained for the first time. FWHM of the distributions has been
determined to be 232 \pm 28 MeV/c. The experimental data are discussed by using
Few-Body Glauber model. Analysis of P_{//} demonstrates a dominant d-wave
configuration for the valence proton in ground state of ^{23} Al, indicating
that ^{23} Al is not a proton halo nucleus
- …