14 research outputs found

    More Energy, More Searches, but the pMSSM Lives On

    Full text link
    We further examine the capability of the 7 and 8 TeV LHC to explore the parameter space of the p(henomenological)MSSM with neutralino LSPs. Here we present an updated study employing all of the relevant ATLAS SUSY analyses, as well as all relevant LHC non-MET searches, whose data were publically available as of mid-September 2012. We find that roughly 1/3 of our pMSSM model points are excluded at present with an important role being played by both the heavy flavor and multi-lepton searches, as well as those for heavy stable charged particles. Nonetheless, we find that light gluinos, 1st/2nd generation squarks, and stop/sbottoms (\lsim 400-700 GeV), as well as models with 1% fine-tuning or better, are still viable in the pMSSM. In addition, we see that increased luminosity at 8 TeV is unlikely to significantly improve the reach of the "vanilla" searches. The impact of these null searches on the SUSY sparticle spectrum is discussed in detail and the implications of these results for models with low fine-tuning, a future lepton collider and dark matter searches are examined.Comment: 33 pages, 9 figure

    pMSSM Benchmark Models for Snowmass 2013

    Full text link
    We present several benchmark points in the phenomenological Minimal Supersymmetric Standard Model (pMSSM). We select these models as experimentally well-motivated examples of the MSSM which predict the observed Higgs mass and dark matter relic density while evading the current LHC searches. We also use benchmarks to generate spokes in parameter space by scaling the mass parameters in a manner which keeps the Higgs mass and relic density approximately constant.Comment: 10 pages, 6 figure

    The CP-violating pMSSM at the Intensity Frontier

    Full text link
    In this Snowmass whitepaper, we describe the impact of ongoing and proposed intensity frontier experiments on the parameter space of the Minimally Supersymmetric Standard Model (MSSM). We extend a set of phenomenological MSSM (pMSSM) models to include non-zero CP-violating phases and study the sensitivity of various flavor observables in these scenarios Future electric dipole moment and rare meson decay experiments can have a strong impact on the viability of these models that is relatively independent of the detailed superpartner spectrum. In particular, we find that these experiments have the potential to probe models that are expected to escape searches at the high-luminosity LHC.Comment: 10 pages, 2 figures. Contributed to the Community Summer Study 2013, Minneapolis, MN July 29 - August 6, 201

    SLAC-PUB-15458 pMSSM Benchmark Models for Snowmass 2013 ∗

    Get PDF
    We present several benchmark points in the phenomenological Minimal Supersymmetric Standard Model (pMSSM). We select these models as experimentally wellmotivated examples of the MSSM which predict the observed Higgs mass and dark matter relic density while evading the current LHC searches. We also use benchmarks to generate spokes in parameter space by scaling the mass parameters in a manner which keeps the Higgs mass and relic density approximately constant. 1 pMSSM Model Generation Despite the continued null results from the LHC, supersymmetry in general and the MSSM in particular remain well-motivated and therefore of considerable interest to future experimental programs. We therefore introduce several benchmark points within the MSSM which predict the observed Higgs mass and dark matter relic density, yet are allowed by current experimental data. These points were taken from scans of the phenomenological MSSM (pMSSM), a subspace of the MSSM with parameters defined at the electroweak scale [1]. The pMSSM is defined by applying the following experimentally-motivated constraints to the R-parity conserving MSSM: (i) CP conservation, (ii) Minimal Flavor Violation at the electroweak scale, (iii) degenerate first and second generation sfermion masses, (iv) negligible Yukawa couplings and A-terms for the first two generations. In particular, no assumptions are made about physics at high scales, e.g. unification or SUSY breaking, in order to capture electroweak scale phenomenology for which a UV-complete theory may not yet exist. Imposing the constraints (i)-(v) decreases the number of free parameters from 105 to 19, o

    The New Look pMSSM with Neutralino and Gravitino LSPs

    Full text link
    The pMSSM provides a broad perspective on SUSY phenomenology. In this paper we generate two new, very large, sets of pMSSM models with sparticle masses extending up to 4 TeV, where the lightest supersymmetric particle (LSP) is either a neutralino or gravitino. The existence of a gravitino LSP necessitates a detailed study of its cosmological effects and we find that Big Bang Nucleosynthesis places strong constraints on this scenario. Both sets are subjected to a global set of theoretical, observational and experimental constraints resulting in a sample of \sim 225k viable models for each LSP type. The characteristics of these two model sets are briefly compared. We confront the neutralino LSP model set with searches for SUSY at the 7 TeV LHC using both the missing (MET) and non-missing ET ATLAS analyses. In the MET case, we employ Monte Carlo estimates of the ratios of the SM backgrounds at 7 and 8 TeV to rescale the 7 TeV data-driven ATLAS backgrounds to 8 TeV. This allows us to determine the pMSSM parameter space coverage for this collision energy. We find that an integrated luminosity of \sim 5-20 fb^{-1} at 8 TeV would yield a substantial increase in this coverage compared to that at 7 TeV and can probe roughly half of the model set. If the pMSSM is not discovered during the 8 TeV run, then our model set will be essentially void of gluinos and lightest first and second generation squarks that are \lesssim 700-800 GeV, which is much less than the analogous mSUGRA bound. Finally, we demonstrate that non-MET SUSY searches continue to play an important role in exploring the pMSSM parameter space. These two pMSSM model sets can be used as the basis for investigations for years to come.Comment: 54 pages, 22 figures; typos fixed, references adde

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    A taste of dark matter: flavour constraints on pseudoscalar mediators

    Full text link

    The Higgs Sector and Fine-Tuning in the pMSSM

    No full text
    The recent discovery of a 125 GeV Higgs, as well as the lack of any positive findings in searches for supersymmetry, has renewed interest in both the supersymmetric Higgs sector and fine-tuning. Here, we continue our study of the phenomenological MSSM (pMSSM), discussing the light Higgs and fine-tuning within the context of two sets of previously generated pMSSM models. We find an abundance of models with experimentally-favored Higgs masses and couplings. We investigate the decay modes of the light Higgs in these models, finding strong correlations between many final states. We then examine the degree of fine-tuning, considering contributions from each of the pMSSM parameters at up to next-to-leading-log order. In particular, we examine the fine-tuning implications for our model sets that arise from the discovery of a 125 GeV Higgs. Finally, we investigate a small subset of models with low fine-tuning and a light Higgs near 125 GeV, describing the common features of such models. We generically find a light stop and bottom with complex decay patterns into a set of light electroweak gauginos, which will make their discovery more challenging and may require novel search techniques.Comment: 52 pages, 31 figures; minor changes, typos fixed, references adde
    corecore