4,942 research outputs found
Catalyst surfaces for the chromous/chromic redox couple
An electricity producing cell of the reduction-oxidation (REDOX) type is described. The cell is divided into two compartments by a membrane, each compartment containing a solid inert electrode. A ferrous/ferric couple in a chloride solution serves as a cathode fluid which is circulated through one of the compartments to produce a positive electric potential disposed therein. A chromic/chromous couple in a chloride solution serves as an anode fluid which is circulated through the second compartment to produce a negative potential on an electrode disposed therein. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which was added to the anode fluid. If the REDOX cell is then discharged, the current flows between the electrodes causing the lead to deplate from the negative electrode and the metal coating on the electrode will act as a catalyst to cause increased current density
Advanced screening of electrode couples
The chromium (Cr(3+)/Cr(2+)) redox couple (electrolyte and electrode) was investigated to determine its suitability as negative electrode for the iron (Fe(3+)/Fe(2+))-chromium (Cr(3+)/Cr(2+)) redox flow battery. Literature search and laboratory investigation established that the solubility and stability of aqueous acidic solutions of chromium(3) chloride and chromium(2) chloride are sufficient for redox battery application. Four categories of electrode materials were tested; namely, metals and metalloid materials (elements and compounds), alloys, plated materials, and Teflon-bonded materials. In all, the relative performance of 26 candidate electrode materials was evaluated on the basis of slow scan rate linear sweep voltammetry in stirred solution. No single material tested gave both acceptable anodic an acceptable cathodic performance. However, the identification of lead as a good cathodic electrocatalyst and gold as a good anodic electrocatalyst led to the invention of the lead/gold combination electrocatalyst. This type of catalyst can be fabricated in several ways and appears to offer the advantages of each metal without the disadvantages associated with their use as single materials. This lead/gold electrocatalyst was tested by NASA-Lewis Research Center in complete, flowing, redox batteries comprising a stack of several cells. A large improvement in the battery's coulombic and energy efficiency was observed
Distortion of the Magnetosphere During a Magnetic Storm on 30 September, 1961
Magnetosphere distortion during magnetic storm observed by Explorer XII satellit
The interplanetary magnetic field and polar magnetic disturbances
Interplanetary magnetic field and magnetic disturbances in polar regio
Synthetic Quantum Systems
So far proposed quantum computers use fragile and environmentally sensitive
natural quantum systems. Here we explore the new notion that synthetic quantum
systems suitable for quantum computation may be fabricated from smart
nanostructures using topological excitations of a stochastic neural-type
network that can mimic natural quantum systems. These developments are a
technological application of process physics which is an information theory of
reality in which space and quantum phenomena are emergent, and so indicates the
deep origins of quantum phenomena. Analogous complex stochastic dynamical
systems have recently been proposed within neurobiology to deal with the
emergent complexity of biosystems, particularly the biodynamics of higher brain
function. The reasons for analogous discoveries in fundamental physics and
neurobiology are discussed.Comment: 16 pages, Latex, 1 eps figure fil
Diquarks: condensation without bound states
We employ a bispinor gap equation to study superfluidity at nonzero chemical
potential: mu .neq. 0, in two- and three-colour QCD. The two-colour theory,
QC2D, is an excellent exemplar: the order of truncation of the quark-quark
scattering kernel: K, has no qualitative impact, which allows a straightforward
elucidation of the effects of mu when the coupling is strong. In rainbow-ladder
truncation, diquark bound states appear in the spectrum of the three-colour
theory, a defect that is eliminated by an improvement of K. The corrected gap
equation describes a superfluid phase that is semi-quantitatively similar to
that obtained using the rainbow truncation. A model study suggests that the
width of the superfluid gap and the transition point in QC2D provide reliable
quantitative estimates of those quantities in QCD.Comment: 7 pages, 3 figures, REVTEX, epsfi
Timelike self-similar spherically symmetric perfect-fluid models
Einstein's field equations for timelike self-similar spherically symmetric
perfect-fluid models are investigated. The field equations are rewritten as a
first-order system of autonomous differential equations. Dimensionless
variables are chosen in such a way that the number of equations in the coupled
system is reduced as far as possible and so that the reduced phase space
becomes compact and regular. The system is subsequently analysed qualitatively
using the theory of dynamical systems.Comment: 23 pages, 6 eps-figure
The analytic structure of heavy quark propagators
The renormalised quark Dyson-Schwinger equation is studied in the limit of
the renormalised current heavy quark mass m_R --> infinity. We are particularly
interested in the analytic pole structure of the heavy quark propagator in the
complex momentum plane. Approximations in which the quark-gluon vertex is
modelled by either the bare vertex or the Ball-Chiu Ansatz, and the Landau
gauge gluon propagator takes either a gaussian form or a gaussian form with an
ultraviolet asymptotic tail are used.Comment: 21 pages Latex and 5 postscript figures. The original version of this
paper has been considerably extended to include a formalism dealing with the
renormalised heavy quark Dyson-Schwinger equation and uses a more realistic
Ansatz for the gluon propagator
pi-pi scattering in a QCD based model field theory
A model field theory, in which the interaction between quarks is mediated by
dressed vector boson exchange, is used to analyse the pionic sector of QCD. It
is shown that this model, which incorporates dynamical chiral symmetry
breaking, asymptotic freedom and quark confinement, allows one to calculate
, , and the partial wave amplitudes in -
scattering and obtain good agreement with the experimental data, with the
latter being well described up to energies \mbox{ MeV}.Comment: 23 Pages, 4 figures in PostScript format, PHY-7512-TH-93, REVTEX
Available via anonymous ftp in /pub: login anonymou get pipi93.tex Fig1.ps
Fig2.ps Fig3.ps Fig4.p
- …