3 research outputs found
Conformational And Functional Studies Of A Cytosolic 90kda Heat Shock Protein Hsp90 From Sugarcane
Hsp90s are involved in several cellular processes, such as signaling, proteostasis, epigenetics, differentiation and stress defense. Although Hsp90s from different organisms are highly similar, they usually have small variations in conformation and function. Thus, the characterization of different Hsp90s is important to gain insight into the structure-function relationship that makes these chaperones key regulators in protein homeostasis. This work describes the characterization of a cytosolic Hsp90 from sugarcane and its comparison with Hsp90s from other plants. Previous expressed sequence tag (EST) studies in Saccharum spp. (sugarcane) predicted the presence of an mRNA coding for a cytosolic Hsp90. The corresponding cDNA was cloned, and the recombinant protein was purified and its conformation and function characterized. The structural conformation of Hsp90 was assessed by chemical cross-linking and hydrogen/deuterium exchange using mass spectrometry and hydrodynamic assays, which revealed regions accessible to solvent and that Hsp90 is an elongated dimer in solution. The invivo expression of Hsp90 in sugarcane leaves was confirmed by western blot, and invitro functional characterization indicated that sugarcane Hsp90 has strong chaperone activity. © 2013 Elsevier Masson SAS.681622Tiroli-Cepeda, A., Ramos, C.H.I., An overview of the role of molecular chaperones in protein homeostasis (2011) Protein Pept. Lett., 18, pp. 101-109Chen, B., Zhong, D., Monteiro, A., Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms (2006) BMC Genomics, 7, p. 156Zhao, R., Davey, M., Hsu, Y.C., Kaplanek, P., Tong, A., Parsons, A.B., Krogan, N., Houry, W.A., Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone (2005) Cell, 120, pp. 715-727McClellan, A.J., Xia, Y., Deutschbauer, A.M., Davis, R.W., Gerstein, M., Frydman, J., Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches (2007) Cell, 131, pp. 121-135Makhnevych, T., Houry, W.A., The role of Hsp90 in protein complex assembly (2011) Biochim. Biophys. Acta, 1823, pp. 674-682da Silva, V.C., Ramos, C.H.I., The network interaction of human 90 kDa heat shock protein Hsp90: a target for cancer therapeutics (2012) J.Proteomics, 75, pp. 2790-2802Jackson, S.E., Hsp90: structure and function (2012) Top. Curr. Chem.Obermann, W.M.J., Sondermann, H., Russo, A.A., Pavletich, N.P., Hartl, F.U., Invivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis (1998) J.Cell. Biol., 143, pp. 901-910Matsumoto, S., Tanaka, E., Nemoto, T.K., Ono, T., Takagi, T., Imai, J., Kimura, Y., Mizuno, A., Interaction between the N-terminal and middle regions is essential for the invivo function of HSP90 molecular chaperone (2002) J.Biol. Chem., 277, pp. 34959-34966Hawle, P., Siepmann, M., Harst, A., Siderius, M., Reusch, H.P., Obermann, W.M., The middle domain of Hsp90 acts as a discriminator between different types of client proteins (2006) Mol. Cell. Biol., 26, pp. 8358-8395Ratzke, C., Mickler, M., Hellenkamp, B., Buchner, J., Hugel, T., Dynamics of heat shock protein 90 C-terminal dimerization is an important part of its conformational cycle (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 16101-16106Prodromou, C., Siligardi, G., O'Brien, R., Woolfson, D.N., Regan, L., Panaretou, B., Ladbury, J.E., Pearl, L.H., Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones (1999) EMBO J., 18, pp. 754-762Sangster, T.A., Queitsch, C., The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity (2005) Curr. Opin. Plant Biol., 8, pp. 86-92Ratzke, C., Nguyen, M.N.T., Mayer, M.P., Hugel, T., From a ratchet mechanism to random fluctuations evolution of Hsp90's mechanochemical cycle (2012) J.Mol. Biol., 423, pp. 462-471Ali, M.M., Roe, S.M., Vaughan, C.K., Meyer, P., Panaretou, B., Piper, P.W., Prodromou, C., Pearl, L.H., Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex (2006) Nature, 440, pp. 1013e1017Shiau, A.K., Harris, S.F., Southworth, D.R., Agard, D.A., Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements (2006) Cell, 127, pp. 329-340Dollins, D.E., Warren, J.J., Immormino, R.M., Gewirth, D.T., Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones (2007) Mol. Cell., 28, pp. 41-56Mayer, M.P., Gymnastics of molecular chaperones (2010) Mol. Cell., 39, pp. 321-331Mendonça, Y.A., Ramos, C.H.I., Cloning, purification and characterization of a 90kDa heat shock protein from Citrus sinensis (sweet orange) (2012) Plant Physiol. Biochem., 50, pp. 87-94Ramos, C.H.I., Ferreira, S.T., Protein folding, misfolding and aggregation: evolving concepts and conformational diseases (2005) Protein Pept. Lett., 12, pp. 213-222Minami, Y., Kimura, Y., Kawasaki, H., Suzuki, K., Yahara, I., The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function invivo (1994) Mol. Cell. Biol., 14, pp. 1459-1464Iglesias, A.H., Santos, L.F., Gozzo, F.C., Identification of cross-linked peptides by high-resolution precursor ion scan (2010) Anal. Chem., 82, pp. 909-916Borges, J.C., Ramos, C.H.I., Analysis of molecular targets of Mycobacterium tuberculosis by analytical ultracentrifugation (2011) Curr. Med. Chem., 18, pp. 1276-1285Cantor, C.R., Schimmel, P.R., Size and shape of macromolecules (1980) Biophysical Chemistry, Part II: Techniques for the Study of Biological Structure and Function, pp. 539-590. , W.H. Freeman and Company, New York, L.W. McCombs (Ed.)Borges, J.C., Peroto, M.C., Ramos, C.H.I., Molecular chaperone genes in the sugarcane expressed sequence database (SUCEST) (2001) Gen. Mol. Biol., 24, pp. 85-92Borges, J.C., Cagliari, T.C., Ramos, C.H.I., Expression and variability of molecular chaperones in the sugarcane expressome (2007) J.Plant Physiol., 164, pp. 505-513Virdi, A.S., Thakur, A., Dutt, S., Kumar, S., Singh, P., Asorghum 85 kDa heat stress-modulated protein shows calmodulin-binding properties and cross-reactivity to anti-Neurospora crassa Hsp 80 antibodies (2009) FEBS Lett., 583, pp. 767-770Yabe, N., Takahashi, T., Komeda, Y., Analysis of tissue-specific expression of Arabidopsis thaliana Hsp90-family gene HSP81 (1994) Plant Cell. Physiol., 35, pp. 1207-1219Sangster, T.A., Bahrami, A., Wilczek, A., Watanabe, E., Schellenberg, K., McLellan, C., Kelley, A., Lindquiest, S., Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels (2007) PLoS One, 2, pp. e648Buchner, J., Grallert, H., Jakob, U., Analysis of chaperone function using citrate synthase as nonnative substrate protein (1998) Methods Enzymol., 290, pp. 323-338Jakob, U., Lilie, H., Meyer, I., Buchner, J., Transient interaction of hsp90 with early unfolding intermediates of citrate synthase-implications for heat shock invivo (1995) J.Biol. Chem., 270, pp. 7288-7294Krukenberg, K.A., Southworth, D.R., Street, T.O., Agard, D.A., PH-dependent conformational changes in bacterial Hsp90 reveal a Grp94-like conformation at pH 6 that is highly active in suppression of citrate synthase aggregation (2009) J.Mol. Biol., 390, pp. 278-291Taipale, M., Krykbaeva, I., Koeva, M., Kayatekin, C., Westover, K.D., Karras, G.I., Lindquist, S., Quantitative analysis of hsp90-client interactions reveals principles of substrate recognition (2012) Cell, 150, pp. 987-1001Vettore, A.L., da Silva, F.R., Kemper, E.L., Arruda, P., The libraries that made SUCEST (2001) Genet. Mol. Biol., 24, pp. 1-7Edelhock, H., Spectroscopic determination of tryptophan and tyrosine in protein (1967) Biochemistry, 6, pp. 1948-1954Bradford, M.M., Arapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254Correa, D.H.A., Ramos, C.H.I., The use of circular dichroism spectroscopy to study protein folding, form and function (2009) Afr. J. Biochem. Res., 3, pp. 164-173McIlwain, S., Draghicescu, P., Singh, P., Goodlett, D.R., Noble, W.S., Detecting cross-linked peptides by searching against a database of cross-linked peptide pairs (2010) J.Proteome Res., 9, pp. 2488-2495Du, X., Chowdhury, S.M., Manes, N., Wu, S., Mayer-Cumblidge, U., Adkins, J., Anderson, G.A., Smith, R.D., Xlink-identifier: an automated data analysis platform for confident identifications of chemically cross-linked peptides using tandem mass spectrometry (2010) J.Proteome Res., 10, pp. 923-931Sali, A., Blundell, T.L., Comparative protein modelling by satisfaction of spatial restraints (1993) J.Mol. Biol., 234, pp. 779-815Zhang, Y., I-TASSER server for protein 3D structure prediction (2008) BMC Bioinforma., 9, p. 40Schwede, T., Kopp, J., Guex, N., Peitsch, M.C., SWISS-MODEL: an automated protein homology-modeling server (2003) Nucl. Acids Res., 31, pp. 3381-3385Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., PROCHECK: a program to check the stereochemical quality of protein structures (1993) J.Appl. Cryst, 26, pp. 283-291Ortega, A., Amoros, D., García de la Torre, J., Prediction of hydrodynamic and other solution properties of rigid proteins from atomic and residue-level models (2011) Biophys. J., 101, pp. 892-898Wales, T.F., Engen, J.R., Partial unfolding of diverse SH3 domains on a wide timescale (2006) J.Mol. Biol., 357, pp. 1592-1604Engen, J.R., Analysis of protein complexes with hydrogen exchange and mass spectrometry (2003) Analyst, 128, pp. 623-628Wei, H., Ahn, J., Yu, Y.Q., Tymiak, A., Engen, J.R., Chen, G., Using hydrogen/deuterium exchange mass spectrometry to study conformational changes in granulocyte colony stimulating factor upon PEGylation (2012) J.Am. Soc. Mass. Spectrom., 23, pp. 498-504Delaplace, P., van der Wal, F., Dierick, J.F., Cordewener, J.H., Fauconnier, M.L., du Jardin, P., America, A.H., Potato tuber proteomics: comparison of two complementary extraction methods designed for 2-DE of acidic proteins (2006) Proteomics, 6, pp. 6494-649
Heparin-binding Sites In Granulocyte-macrophage Colony-stimulating Factor: Localization And Regulation By Histidine Ionization
The biological activity of granulocyte-macrophage colony-stimulating factor (GM-CSF) is modulated by the sulfated glycosaminoglycans (GAGs) heparan sulfate and heparin. However, the molecular mechanisms involved in such interactions are still not completely understood. We have proposed previously that helix C, one of the four α-helices of human GM-CSF (hGM-CSF), contains a GAG-binding site in which positively charged residues are spatially positioned for interaction with the sulfate moieties of the GAGs (Wettreich, A., Sebollela, A., Carvalho, M. A., Azevedo, S. P., Borojevic, R., Ferreira, S. T., and Coelho-Sampaio, T. (1999) J. Biol. Chem. 274, 31468-31475). Protonation of two histidine residues (His83 and His87) in helix C of hGM-CSF appears to act as a pH-dependent molecular switch to control the interaction with GAGs. Based on these findings, we have now generated a triple mutant form of murine GM-CSF (mGM-CSF) in which three noncharged residues in helix C of the murine factor (Tyr83, Gln85, and Tyr87) were replaced by the corresponding basic residues present in hGM-CSF (His 83, Lys85, and His87). Binding assays on heparin-Sepharose showed that, at acidic pH, the triple mutant mGM-CSF binds to immobilized heparin with significantly higher affinity than wild type (WT) mGM-CSF and that neither protein binds to the column at neutral pH. The fact that even WT mGM-CSF binds to heparin at acidic pH indicates the existence of a distinct, lower affinity heparin-binding site in the protein. Chemical modification of the single histidine residue (His15) located in helix A of WT mGM-CSF with diethyl pyrocarbonate totally abolished binding to immobilized heparin. Moreover, replacement of His15 for an alanine residue significantly reduced the affinity of mGM-CSF for heparin at pH 5.0 and completely blocked heparin binding to a synthetic peptide corresponding to helix A of GM-CSF. These results indicate a major role of histidine residues in the regulation of the binding of GM-CSF to GAGs, supporting the notion that an acidic microenvironment is required for GM-CSF-dependent regulation of target cells. In addition, our results provide insight into the molecular basis of the strict species specificity of the biological activity of GM-CSF. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc.280363194931956Metcalf, D., (1991) Science, 254, pp. 529-533Modrowski, D., Lomri, A., Marie, P.J., (1998) J. Cell Physiol., 177, pp. 187-195Walter, M.R., Cook, W.J., Ealick, S.E., Nagabhushan, T.L., Trotta, P.P., Bugg, C.E., (1992) J. Mol. Biol., 224, pp. 1075-1085Bazan, J.F., (1990) Proc. Natl. Acad. Sci. U. S. A., 87, pp. 6934-6938Hayashida, K., Kitamura, T., Gorman, D.M., Arai, K.I., Yokota, T., Miyajima, A., (1990) Proc. Natl. Acad. Sci. U. S. A., 87, pp. 9655-9659D'Andrea, R.J., Gonda, T.J., (2000) Exp. Hematol., 28, pp. 231-243Harmer, N.J., Chirgadze, D., Kim, K.H., Pellegrini, L., Blundell, T.L., (2003) Biophys. Chem., 100, pp. 545-553Alvarez-Silva, M., Da Silva, L.C.F., Borojevic, R., (1993) J. Cell Sci., 104, pp. 477-484Alvarez-Silva, M., Borojevic, R., (1996) J. Leukocyte Biol., 59, pp. 435-441Modrowski, D., Basle, M., Lomri, A., Marie, P.J., (2000) J. Biol. Chem., 275, pp. 9178-9185Tumova, S., Woods, A., Couchman, J.R., (2000) Int. J. Biochem. Cell Biol., 32, pp. 269-288Schlessinger, J., Plotnikov, A.N., Ibrahimi, O.A., Eliseenkova, A.V., Yeh, B.K., Yayon, A., Linhardt, R.J., Mohammadi, M., (2000) Mol. Cell, 6, pp. 743-750Harmer, N.J., Ilag, L.L., Mulloy, B., Pellegrini, L., Robinson, C.V., Blundell, T.L., (2004) J. Mol. Biol., 339, pp. 821-834Monfardini, C., Canziani, G., Plugariu, C., Kieber-Emmons, T., Godillot, A.P., Kwah, J., Bajgier, J., Williams, W.V., (2002) Curr. Pharm. Des., 8, pp. 2185-2199Cardin, A.D., Weintraub, H.J., (1989) Arteriosclerosis, 9, pp. 21-32Mulloy, B., Linhardt, R.J., (2001) Curr. Opin. Struct. Biol., 11, pp. 623-628Wettreich, A., Sebollela, A., Carvalho, M.A., Azevedo, S.P., Borojevic, R., Ferreira, S.T., Coelho-Sampaio, T., (1999) J. Biol. Chem., 274, pp. 31468-31475Landt, O., Grunert, H.P., Hahn, U., (1990) Gene (Amst.), 96, pp. 125-128Mosmann, T., (1983) J. Immunol. Methods, 65, pp. 55-63Miles, E.W., (1977) Methods Enzymol., 47, pp. 431-442Baker, N.A., Sept, D., Joseph, S., Holst, M.J., McCammon, J.A., (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 10037-10041Delano, W.L., (2002) The PyMOL Molecular Graphics System, , DeLano Scientific, San Carlos, CADelamarter, J.F., Mermod, J.J., Liang, C.M., Eliason, J.F., Thatcher, D.R., (1985) EMBO J., 4, pp. 2575-2581Burgess, A.W., Begley, C.G., Johnson, G.R., Lopez, A.F., Williamson, D.J., Mermod, J.J., Simpson, R.J., Delamarter, J.F., (1987) Blood, 69, pp. 43-51Wingfield, P., Graber, P., Moonen, P., Craig, S., Pain, R.H., (1988) Eur. J. Biochem., 173, pp. 65-72Schrimsher, J.L., Rose, K., Simona, M.G., Wingfield, P., (1987) Biochem. J., 247, pp. 195-199Dexter, T.M., Garland, J., Scott, D., Scolnick, E., Metcalf, D., (1980) J. Exp. Med., 152, pp. 1036-1047Thompson, L.D., Pantoliano, M.W., Springer, B.A., (1994) Biochemistry, 33, pp. 3831-3840Matsumoto, R., Sali, A., Ghildyal, N., Karplus, M., Stevens, R.L., (1995) J. Biol. Chem., 270, pp. 19524-19531Sasaki, T., Larsson, H., Kreuger, J., Salmivirta, M., Claesson-Welsh, L., Lindahl, U., Hohenester, E., Timpl, R., (1999) EMBO J., 18, pp. 6240-6248Lundblad, R.L., Noyes, C.M., (1984) Chemical Reagents for Protein Modification, 1, pp. 105-125. , CRC Press, Inc., Boca Raton, FLMeot-Ner, M., Sieck, L.W., (1991) J. Am. Chem. Soc., 113, pp. 4448-4460Carvalho, M.A., Arcanjo, K., Silva, L.C.F., Borojevic, R., (2000) Biol. Cell, 92, pp. 605-614Borojevic, R., Carvalho, M.A., Correa-Junior, J.D., Arcanjo, K., Gomes, L., Joazeiro, P.P., Balduino, A., Coelho-Sampaio, T., (2003) Cell Tissue Res., 313, pp. 55-62Carneiro, F.A., Stauffer, F., Lima, C.S., Juliano, M.A., Juliano, L., Da Poian, A.T., (2003) J. Biol. Chem., 278, pp. 13789-13794Wang, H.M., Loganathan, D., Linhardt, R.J., (1991) Biochem. J., 278, pp. 689-695Hileman, R.E., Fromm, J.R., Weiler, J.M., Linhardt, R.J., (1998) BioEssays, 20, pp. 156-167Margalit, H., Fischer, N., Bensasson, S.A., (1993) J. Biol. Chem., 268, pp. 19228-19231Hallgren, J., Backstrom, S., Estrada, S., Thuveson, M., Pejler, G., (2004) J. Immunol., 173, pp. 1868-1875Gallagher, J.T., (2001) J. Clin. Investig., 108, pp. 357-361Schnaar, R.L., (2004) Arch. Biochem. Biophys., 426, pp. 163-172De Cristan, G., Morbidelli, L., Alessandri, G., Ziche, M., Cappa, A.P.M., Gullino, P.M., (1990) J. Cell Physiol., 144, pp. 505-510Vyas, A.A., Patel, H.V., Fromholt, S.E., Heffer-Lauc, M., Vyas, K.A., Dang, J.Y., Schachner, M., Schnaar, R.L., (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 8412-8417Freire, E., Gomes, F.C.A., Linden, R., Neto, V.M., Coelho-Sampaio, T., (2002) J. Cell Sci., 115, pp. 4867-4876Freire, E., Gomes, F.C., Jhota-Mattos, T., Neto, V.M., Silva Filho, F.C., Coelho-Sampaio, T., (2004) J. Cell Sci., 117, pp. 4067-4076Arcanjo, K., Belo, G., Folco, C., Werneck, C.C., Borojevic, R., Silva, L.C.F., (2002) J. Cell Biochem., 87, pp. 160-172Kaushansky, K., Lin, N., Adamson, J.W., (1988) J. Clin. Investig., 81, pp. 92-9