15 research outputs found

    Single-mode instability in standing-wave lasers: The quantum cascade laser as a self-pumped parametric oscillator

    Get PDF
    We report the observation of a clear single-mode instability threshold in continuous-wave Fabry-Perot quantum cascade lasers (QCLs). The instability is characterized by the appearance of sidebands separated by tens of free spectral ranges (FSR) from the first lasing mode, at a pump current not much higher than the lasing threshold. As the current is increased, higher-order sidebands appear that preserve the initial spacing, and the spectra are suggestive of harmonically phase-locked waveforms. We present a theory of the instability that applies to all homogeneously broadened standing-wave lasers. The low instability threshold and the large sideband spacing can be explained by the combination of an unclamped, incoherent Lorentzian gain due to the population grating, and a coherent parametric gain caused by temporal population pulsations that changes the spectral gain line shape. The parametric term suppresses the gain of sidebands whose separation is much smaller than the reciprocal gain recovery time, while enhancing the gain of more distant sidebands. The large gain recovery frequency of the QCL compared to the FSR is essential to observe this parametric effect, which is responsible for the multiple-FSR sideband separation. We predict that by tuning the strength of the incoherent gain contribution, for example by engineering the modal overlap factors and the carrier diffusion, both amplitude-modulated (AM) or frequency-modulated emission can be achieved from QCLs. We provide initial evidence of an AM waveform emitted by a QCL with highly asymmetric facet reflectivities, thereby opening a promising route to ultrashort pulse generation in the mid-infrared. Together, the experiments and theory clarify a deep connection between parametric oscillation in optically pumped microresonators and the single-mode instability of lasers, tying together literature from the last 60 years.United States. Defense Advanced Research Projects Agency. Spectral Combs from UV to THz Program (Grant W31P4Q-16-1-0002)National Science Foundation (U.S.) (Awards ECCS-1230477, ECCS-1614631 and ECCS- 1614531)United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (Air Force Contracts FA8721-05-C- 0002 and No. FA8702-15-D-0001

    Evaluating trade-offs of a large, infrequent sediment diversion for restoration of a forested wetland in the Mississippi delta

    No full text
    © 2018 Elsevier Ltd Flood control levees cut off the supply of sediment to Mississippi delta coastal wetlands, and contribute to putting much of the delta on a trajectory for continued submergence in the 21st century. River sediment diversions have been proposed as a method to provide a sustainable supply of sediment to the delta, but the frequency and magnitude of these diversions needs further assessment. Previous studies suggested operating river sediment diversions based on the size and frequency of natural crevasse events, which were large (\u3e5000 m3/s) and infrequent (active \u3c once a year) in the last naturally active delta. This study builds on these previous works by quantitatively assessing tradeoffs for a large, infrequent diversion into the forested wetlands of the Maurepas swamp. Land building was estimated for several diversion sizes and years inactive using a delta progradation model. A benefit-cost analysis (BCA) combined model land building results with an ecosystem service valuation and estimated costs. Results demonstrated that land building is proportional to diversion size and inversely proportional to years inactive. Because benefits were assumed to scale linearly with land gain, and costs increase with diversion size, there are disadvantages to operating large diversions less often, compared to smaller diversions more often for the immediate project area. Literature suggests that infrequent operation would provide additional gains (through increased benefits and reduced ecosystem service costs) to the broader Lake Maurepas-Pontchartrain-Borgne ecosystem. Future research should incorporate these additional effects into this type of BCA, to see if this changes the outcome for large, infrequent diversions
    corecore