3 research outputs found

    A novel mechanism of resistance to α-difluoromethylornithine induced by cycloheximide Growth with abnormally low levels of putrescine and spermidine

    Get PDF
    AbstractTreatment of the chemically transformed fibroblasts BP-A31 and other cell lines with low concentrations of cycloheximide (CHM) for 72 h followed by the removal of the protein synthesis inhibitor leads to the proliferation of α-difluoromethylornithine (DFMO)-resistant phenotypes. These drug-resistant cells contain almost no ornithine decarboxylase (ODC) activity and concomitantly very low levels of putrescine and spermidine. Southern blot analysis and measurements of ODC activity and intracellular polyamine levels showed that the described mechanism of inducing resistance to DFMO triggered by CHM does not involve ODC gene amplification, altered transport of the drug or reduced affinity of the enzyme for DFMO

    Identification and characterization of human PEIG-1/GPRC5A as a 12-Otetradecanoyl phorbol-13-acetate (TPA) and PKC-induced gene

    No full text
    Abstract: Homo sapiens orphan G protein-coupling receptor PEIG-1 was first cloned and characterized by applying differential display to T84 colonic carcinoma cells incubated in the presence of phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) (GenBank AF506289.1). Later, Lotan's laboratory found the same gene product in response to retinoic acid analogues, naming it with the symbol RAIG1. Now the official HGNC symbol is GPRC5A. Here, we report the extension of its original cDNA fragment towards the 5' and 3' end. In addition, we show that TPA (100 ng/ml, 162 nM) strongly stimulated GPRC5A mRNA in T84 colonic carcinoma cells, with maximal expression at 4 h and 100 ng/ml (162 nM). Western blots showed several bands between 35 and 50 kDa, responding to TPA stimulation. Confocal microscopy confirmed its TPA upregulation and the location in the plasma membrane. The PKC inhibitor Gö 6983 (10 μM), and the Ca2+ chelator BAPTA-AM (150 μM), strongly inhibited its TPA induced upregulation. The PKA inhibitor H-89 (10 μM), and the MEK1/2 inhibitor U0126 (10 μM), also produced a significant reduction in the TPA response (~50%). The SGK1 inhibitor GSK650394 stimulated GPRC5A basal levels at low doses and inhibit its TPA-induced expression at concentrations ≥10 μM. The IL-1β autocrine loop and downstream signalling did not affect its expression. In conclusion, RAIG1/RAI3/GPRC5A corresponds to the originally reported PEIG-1/TIG1; the inhibition observed in the presence of Gö 6983, BAPTA and U0126, suggests that its TPA-induced upregulation is mediated through a PKC/Ca2+ →MEK1/2 signalling axis. PKA and SGK1 kinases are also involved in its TPA-induced upregulation
    corecore