8 research outputs found

    Structure tuning for enhanced properties in isotactic polypropylene

    Get PDF

    Full characterization of multiphase, multimorphological kinetics in flow-induced crystallization of IPP at elevated pressure

    Get PDF
    Understanding the complex crystallization behavior of isotactic polypropylene (iPP) in conditions comparable to those found in polymer processing, where the polymer melt experiences a combination of high shear rates and elevated pressures, is key for modeling and therefore predicting the final structure and properties of iPP products. Coupling a unique experimental setup, capable to apply wall shear rates similar to those experienced during processing and carefully control the pressure before and after flow is imposed, with in situ X-ray scattering and diffraction techniques (SAXS and WAXD) at fast acquisition rates (up to 30 Hz), a well-defined series of short-term flow experiments are carried out using 16 different combinations of wall shear rates (ranging from 110 to 440 s–1) and pressures (100–400 bar). A complete overview on the kinetics of structure development during and after flow is presented. Information about shish formation and growth of α-phase parents lamellae from the shish backbones is extracted from SAXS; the overall apparent crystallinity evolution, amounts of different phases (α, β, and γ), and morphologies developing in the shear layer (parent and daughter lamellae both in α and γ phase) are fully quantified from the analysis of WAXD data. Both flow rate and pressure were found to have a significant influence on the nucleation and the growth process of oriented and isotropic structures. Flow affects shish formation and the growth of α-parents; pressure acts on relaxation times, enhancing the effect of flow, and (mainly) on the growth rate of γ-phase. The remarkably high amount of γ-lamellae found in the oriented layer strongly indicates the nucleation of γ directly from the shish backbone. All the observations were conceptually in agreement with the flow-induced crystallization model framework developed in our group and represent a unique and valuable data set that will be used to further validate and implement our numerical modeling, filling the gap for quantitatively modeling crystallization during complicated processing operations like injection molding

    The prediction of mechanical performance of isotactic polypropylene on the basis of processing conditions

    Get PDF
    A strategy is presented to predict the yield kinetics following from different thermomechanical histories experienced during processing in non-isothermal quiescent conditions. This strategy deals with three main parts, i.e. processing, structure and properties. In the first part the applied cooling conditions are combined with the crystallization kinetics and the cooling history of the material is calculated. From this history the lamellar thickness distributions are predicted in the second part. Finally, in the third part these distributions are used to predict yield stresses. Experimental validation is carried out for all the different parts of the strategy. In situ temperature measurements, lamellar thickness distributions from SAXS experiments and yield stresses measured in uniaxial tensile deformation are performed for validation purposes. The versatility is investigated by applying this procedure on two different iPP grades. The yield stress predictions show good agreement with the experimentally obtained results in two separate deformation mechanisms, and only a few parameters are dependent on the specific iPP grades that were used here. Moreover, it is shown that the average lamellar thickness is sufficient to predict the yield stress, and that the width of lamellar thickness distributions does not have to be taken into account

    Deformation and failure kinetics of iPP polymorphs

    No full text
    In this study, the mechanical performance of thedifferent polymorphs of isotactic polypropylene, typically pre-sent in iPP crystallized under industrial processing conditions,is assessed. Different preparation strategies were used toobtain samples consisting of almost solely alpha, beta, or gamma crystals. X-Ray measurements were used to validate that the desired phase was obtained. The intrinsic true stress - true strain response of all individual phases was measured in uniaxial compression at several strain rates (deformation kinetics). Moreover, measurements were performed over a wide temperature range, covering the window in between the glass transition and the melting temperature. The relation between obtained yield stress and the strain rate is described with a modification of the Ree-Eyring model. Differences and similarities in the deformation kinetics of the different phases are presented and discussed. Furthermore, the presence of three deformation processes, acting in parallel, is revealed. The Ree-Eyring equation enables lifetime prediction for given thermal and mechanical conditions. These predictions were experimentally validated using constant load tests in uniaxial compres-sion

    An experimentally validated model for quiescent multiphase primary and secondary crystallization phenomena in PP with low content of ethylene comonomer

    Get PDF
    While crystallization behavior of isotactic polypropylene homopolymers had been subject to a wide range of experimental and modeling studies, this is not the case for propylene-ethylene random copolymers (PPR). This class of polymers offers up to now significant challenges, both from an experimental as well as a modeling perspective. The ethylene incorporation in the propylene chains, as well as the distribution of this comonomer, has a marked effect on the crystallization kinetics. Moreover, the presence of these defects causes a clear separation between primary crystallization (i.e. space filling) and subsequent secondary crystallization (increase of crystallinity in filled space) within the spherulitic skeletons, particularly subsequent at high primary crystallization temperatures. In this work, the underlying mechanism is first quantified by means of a combination of in-situ WAXD and SAXS experiments, as well as ex-situ WAXD experiments and calorimetric measurements. Based on these experiments an extended model framework is presented, capable of predicting multiphase non-isothermal crystallization kinetics as well as the final crystallinity as a function of the applied thermal conditions relevant for processing. The chemical composition distribution (CCD) of the ethylene comonomer serves as critical input to parameterize the model. Optical microscopy- and DSC experiments are used for parameterization of the primary crystallization model. The model developed in this study is, in principle, applicable to all polypropylenes, ranging from homo-polymers to random copolymers with variable comonomer content and/or CCD but, so far, only applied and validated on one PPR. To validate the model and the parameters for a given PPR, several non-isothermal and isothermal experiments (the latter followed by subsequent cooling) are conducted over a wide range of crystallization temperatures and cooling rates. The good match between experiments and model predictions demonstrates the power of the newly developed framework. The final crystallinity, the amount of α- and γ-phase, and the ratio between primary and secondary crystallization can be predicted as a function of the time-temperature history. To the best knowledge of the authors, it is the first time that such a direct connection with the CCD is incorporated in a crystallization model. Consequently, the model offers a new tool to bridge the gap between chemical structure and resulting product properties, which now has come one step closer for PPR systems
    corecore