5 research outputs found

    Measurement entropy in Generalized Non-Signalling Theory cannot detect bipartite non-locality

    Full text link
    We consider entropy in Generalized Non-Signalling Theory (also known as box world) where the most common definition of entropy is the measurement entropy. In this setting, we completely characterize the set of allowed entropies for a bipartite state. We find that the only inequalities amongst these entropies are subadditivity and non-negativity. What is surprising is that non-locality does not play a role - in fact any bipartite entropy vector can be achieved by separable states of the theory. This is in stark contrast to the case of the von Neumann entropy in quantum theory, where only entangled states satisfy S(AB)<S(A).Comment: 14 pages, includes minor corrections from v

    Infinitely many constrained inequalities for the von Neumann entropy

    Full text link
    We exhibit infinitely many new, constrained inequalities for the von Neumann entropy, and show that they are independent of each other and the known inequalities obeyed by the von Neumann entropy (basically strong subadditivity). The new inequalities were proved originally by Makarychev et al. [Commun. Inf. Syst., 2(2):147-166, 2002] for the Shannon entropy, using properties of probability distributions. Our approach extends the proof of the inequalities to the quantum domain, and includes their independence for the quantum and also the classical cases.Comment: 11 page

    Inequalities for the Ranks of Quantum States

    Full text link
    We investigate relations between the ranks of marginals of multipartite quantum states. These are the Schmidt ranks across all possible bipartitions and constitute a natural quantification of multipartite entanglement dimensionality. We show that there exist inequalities constraining the possible distribution of ranks. This is analogous to the case of von Neumann entropy (\alpha-R\'enyi entropy for \alpha=1), where nontrivial inequalities constraining the distribution of entropies (such as e.g. strong subadditivity) are known. It was also recently discovered that all other \alpha-R\'enyi entropies for α(0,1)(1,)\alpha\in(0,1)\cup(1,\infty) satisfy only one trivial linear inequality (non-negativity) and the distribution of entropies for α(0,1)\alpha\in(0,1) is completely unconstrained beyond non-negativity. Our result resolves an important open question by showing that also the case of \alpha=0 (logarithm of the rank) is restricted by nontrivial linear relations and thus the cases of von Neumann entropy (i.e., \alpha=1) and 0-R\'enyi entropy are exceptionally interesting measures of entanglement in the multipartite setting
    corecore