65 research outputs found

    Dysregulation of Macrophage-Secreted Cathepsin B Contributes to HIV-1-Linked Neuronal Apoptosis

    Get PDF
    Chronic HIV infection leads to the development of cognitive impairments, designated as HIV-associated neurocognitive disorders (HAND). The secretion of soluble neurotoxic factors by HIV-infected macrophages plays a central role in the neuronal dysfunction and cell death associated with HAND. One potentially neurotoxic protein secreted by HIV-1 infected macrophages is cathepsin B. To explore the potential role of cathepsin B in neuronal cell death after HIV infection, we cultured HIV-1ADA infected human monocyte-derived macrophages (MDM) and assayed them for expression and activity of cathepsin B and its inhibitors, cystatins B and C. The neurotoxic activity of the secreted cathepsin B was determined by incubating cells from the neuronal cell line SK-N-SH with MDM conditioned media (MCM) from HIV-1 infected cultures. We found that HIV-1 infected MDM secreted significantly higher levels of cathepsin B than did uninfected cells. Moreover, the activity of secreted cathepsin B was significantly increased in HIV-infected MDM at the peak of viral production. Incubation of neuronal cells with supernatants from HIV-infected MDM resulted in a significant increase in the numbers of apoptotic neurons, and this increase was reversed by the addition of either the cathepsin B inhibitor CA-074 or a monoclonal antibody to cathepsin B. In situ proximity ligation assays indicated that the increased neurotoxic activity of the cathepsin B secreted by HIV-infected MDM resulted from decreased interactions between the enzyme and its inhibitors, cystatins B and C. Furthermore, preliminary in vivo studies of human post-mortem brain tissue suggested an upregulation of cathepsin B immunoreactivity in the hippocampus and basal ganglia in individuals with HAND. Our results demonstrate that HIV-1 infection upregulates cathepsin B in macrophages, increases cathepsin B activity, and reduces cystatin-cathepsin interactions, contributing to neuronal apoptosis. These findings provide new evidence for the role of cathepsin B in neuronal cell death induced by HIV-infected macrophages

    CYP2D6

    No full text

    Mechanisms of Regulation of the <i>CHRDL1</i> Gene by the TWIST2 and ADD1/SREBP1c Transcription Factors

    No full text
    Setleis syndrome (SS) is a rare focal facial dermal dysplasia caused by recessive mutations in the basic helix-loop-helix (bHLH) transcription factor, TWIST2. Expression microarray analysis showed that the chordin-like 1 (CHRDL1) gene is up-regulated in dermal fibroblasts from three SS patients with the Q119X TWIST2 mutation. METHODS: Putative TWIST binding sites were found in the upstream region of the CHRDL1 gene and examined by electrophoretic mobility shift (EMSA) and reporter gene assays. RESULTS: EMSAs showed specific binding of TWIST1 and TWIST2 homodimers, as well as heterodimers with E12, to the more distal E-boxes. An adjoining E-box was bound by ADD1/SREBP1c. EMSA analysis suggested that TWIST2 and ADD1/SREBP1c could compete for binding. Luciferase (luc) reporter assays revealed that the CHRDL1 gene upstream region drives its expression and ADD1/SREBP1c increased it 2.6 times over basal levels. TWIST2, but not the TWIST2-Q119X mutant, blocked activation by ADD1/SREBP1c, but overexpression of TWIST2-Q119X increased luc gene expression. In addition, EMSA competition assays showed that TWIST2, but not TWIST1, competes with ADD1/SREBP1c for DNA binding to the same site. CONCLUSIONS: Formation of an inactive complex between the TWIST2 Q119X and Q65X mutant proteins and ADD1/SREBP1c may prevent repressor binding and allow the binding of other regulators to activate CHRDL1 gene expression

    Amino acid comparison between ancestor and human Twist sequences.

    No full text
    <p>Functional motifs (nuclear localization signal (NLSs), basic Helix-loop-Helix (bHLH), glycine-rich regions, and Twist box domains) are depicted by bars on top of the sequence. Twist2 lacks both glycine regions present only in Twist1. The Twist_BB (closest to ancestor) protein lacks the first glycine region but contains some glycine residues in the second glycine region (black box). The Twist_BB protein contains extra amino acid residues at the start of its N-terminus and in the Twist box domain of the C-terminus not present in either human Twist proteins. The bHLH domains are approximately 90% conserved in all three sequences. Overall, Twist1 amino acid sequence is 54% similar to Twist_BB, while Twist2 has 64% similarity, which suggests that the ancestor of both Twist paralogs was a “Twist2-like” protein. Below the protein sequence: (*) = conserved residues; (:) = conservative mutations; (.) = semi-conservative mutations; () = non-conservative mutations. Twist_BB = <i>Branchiostoma belcheri</i> (Lancelet). Sequence names used represent the common name of the species to which they belong. The alignment was performed with PSI-COFFEE.</p

    Secondary structure prediction of TWIST proteins.

    No full text
    <p><b>A) Structural characteristics of TWIST1 protein. B) Structural characteristics of TWIST2 proteins.</b> The analyses show that both TWIST1 and TWIST2 sequences have a disordered amino terminus domain as expected. It also predicts a high degree of structure for the bHLH domain, and the carboxy terminus in a disordered/flexible region. Pink tube = helix; Yellow arrow = strand; Black line = coil; Blue bars = confidence of prediction; Pred = predicted secondary structure; A.A. = target sequence. The FFpred web server was used for structure prediction.</p

    Evolution of the Twist Subfamily Vertebrate Proteins: Discovery of a Signature Motif and Origin of the Twist1 Glycine-Rich Motifs in the Amino-Terminus Disordered Domain

    No full text
    <div><p>Twist proteins belong to the basic helix-loop-helix (bHLH) family of multifunctional transcriptional factors. These factors are known to use domains other than the common bHLH in protein-protein interactions. There has been much work characterizing the bHLH domain and the C-terminus in protein-protein interactions but despite a few attempts more focus is needed at the N-terminus. Since the region of highest diversity in Twist proteins is the N-terminus, we analyzed the conservation of this region in different vertebrate Twist proteins and study the sequence differences between Twist1 and Twist2 with emphasis on the glycine-rich regions found in Twist1. We found a highly conserved sequence motif in all Twist1 (SSSPVSPADDSLSNSEEE) and Twist2 (SSSPVSPVDSLGTSEEE) mammalian species with unknown function. Through sequence comparison we demonstrate that the Twist protein family ancestor was “Twist2-like” and the two glycine-rich regions found in Twist1 sequences were acquired late in evolution, apparently not at the same time. The second glycine-rich region started developing first in the fish vertebrate group, while the first glycine region arose afterwards within the reptiles. Disordered domain and secondary structure predictions showed that the amino acid sequence and disorder feature found at the N-terminus is highly evolutionary conserved and could be a functional site that interacts with other proteins. Detailed examination of the glycine-rich regions in the N-terminus of Twist1 demonstrate that the first region is completely aliphatic while the second region contains some polar residues that could be subject to post-translational modification. Phylogenetic and sequence space analysis showed that the Twist1 subfamily is the result of a gene duplication during Twist2 vertebrate fish evolution, and has undergone more evolutionary drift than Twist2. We identified a new signature motif that is characteristic of each Twist paralog and identified important residues within this motif that can be used to distinguish between these two paralogs, which will help reduce Twist1 and Twist2 sequence annotation errors in public databases.</p></div
    corecore