34 research outputs found

    MAP Kinase Phosphatase-2 Plays a Critical Role in Response to Infection by Leishmania mexicana

    Get PDF
    In this study we generated a novel dual specific phosphatase 4 (DUSP4) deletion mouse using a targeted deletion strategy in order to examine the role of MAP kinase phosphatase-2 (MKP-2) in immune responses. Lipopolysaccharide (LPS) induced a rapid, time and concentration-dependent increase in MKP-2 protein expression in bone marrow-derived macrophages from MKP-2+/+ but not from MKP-2−/− mice. LPS-induced JNK and p38 MAP kinase phosphorylation was significantly increased and prolonged in MKP-2−/− macrophages whilst ERK phosphorylation was unaffected. MKP-2 deletion also potentiated LPS-stimulated induction of the inflammatory cytokines, IL-6, IL-12p40, TNF-α, and also COX-2 derived PGE2 production. However surprisingly, in MKP-2−/− macrophages, there was a marked reduction in LPS or IFNÎł-induced iNOS and nitric oxide release and enhanced basal expression of arginase-1, suggesting that MKP-2 may have an additional regulatory function significant in pathogen-mediated immunity. Indeed, following infection with the intracellular parasite Leishmania mexicana, MKP-2−/− mice displayed increased lesion size and parasite burden, and a significantly modified Th1/Th2 bias compared with wild-type counterparts. However, there was no intrinsic defect in MKP-2−/− T cell function as measured by anti-CD3 induced IFN-Îł production. Rather, MKP-2−/− bone marrow-derived macrophages were found to be inherently more susceptible to infection with Leishmania mexicana, an effect reversed following treatment with the arginase inhibitor nor-NOHA. These findings show for the first time a role for MKP-2 in vivo and demonstrate that MKP-2 may be essential in orchestrating protection against intracellular infection at the level of the macrophage

    Acquired and congenital disorders of sung performance: A review.

    Get PDF
    Many believe that the majority of people are unable to carry a tune. Yet, this widespread idea underestimates the singing abilities of the layman. Most occasional singers can sing in tune and in time, provided that they perform at a slow tempo. Here we characterize proficient singing in the general population and identify its neuronal underpinnings by reviewing behavioral and neuroimaging studies. In addition, poor singing resulting from a brain injury or neurogenetic disorder (i.e., tone deafness or congenital amusia) is examined. Different lines of evidence converge in indicating that poor singing is not a monolithic deficit. A variety of poor-singing "phenotypes" are described, with or without concurrent perceptual deficits. In addition, particular attention is paid to the dissociations between specific abilities in poor singers (e.g., production of absolute vs. relative pitch, pitch vs. time accuracy). Such diversity of impairments in poor singers can be traced to different faulty mechanisms within the vocal sensorimotor loop, such as pitch perception and sensorimotor integration

    Characterization of fibril dynamics on three timescales by solid-state NMR

    No full text
    ISSN:0925-2738ISSN:1573-500

    Differential regulation of MAP kinase activation by a novel splice variant of human MAP kinase phosphatase-2

    No full text
    MAP kinase phosphatase-2 (MKP-2) is a member of the family of dual specificity phosphatases that functions to inactivate the ERK and JNK MAP kinase signalling pathways. Here, we identify a novel human MKP-2 variant (MKP-2-S) lacking the MAP kinase binding site but retaining the phosphatase catalytic domain. Endogenous MKP-2-S transcripts and proteins were found in PC3 prostate and MDA-MB-231 breast cancer cells and also human prostate biopsies. Cellular transfection of MKP-2-S gave rise to a nuclear protein of 33 kDa which displayed phosphatase activity comparable to the formerly described long form of MKP-2 (MKP-2-L). Due to its lack of a kinase interacting motif (KIM), MKP-2-S did not bind to JNK or ERK; MKP-2-L bound ERK and to a lesser extent JNK. Protein turnover of adenoviral expressed MKP-2-S was accelerated relative to MKP-2-L, with a greater susceptibility to proteosomal-mediated degradation. MKP-2-S retained its ability to deactivate JNK in a similar manner as MKP-2-L and was an effective inhibitor of LPS-stimulated COX-2 induction. However, unlike MKP-2-L, MKP-2-S was unable to reverse serum-induced ERK activation or significantly inhibit endothelial cell proliferation. These findings reveal the occurrence of a novel splice variant of MKP-2 which is unable to bind ERK and may be significant in the dysregulation of MAP kinase activity in certain disease states, particularly in breast and prostate cancers

    Asparagine and Glutamine Side-Chains and Ladders in HET-s(218–289) Amyloid Fibrils Studied by Fast Magic-Angle Spinning NMR

    No full text
    Asparagine and glutamine side-chains can form hydrogen-bonded ladders which contribute significantly to the stability of amyloid fibrils. We show, using the example of HET-s(218–289) fibrils, that the primary amide side-chain proton resonances can be detected in cross-polarization based solid-state NMR spectra at fast magic-angle spinning (MAS). J-coupling based experiments offer the possibility to distinguish them from backbone amide groups if the spin-echo lifetimes are long enough, which turned out to be the case for the glutamine side-chains, but not for the asparagine side-chains forming asparagine ladders. We explore the sensitivity of NMR observables to asparagine ladder formation. One of the two possible asparagine ladders in HET-s(218–289), the one comprising N226 and N262, is assigned by proton-detected 3D experiments at fast MAS and significant de-shielding of one of the NH2 proton resonances indicative of hydrogen-bond formation is observed. Small rotating-frame 15N relaxation-rate constants point to rigidified asparagine side-chains in this ladder. The proton resonances are homogeneously broadened which could indicate chemical exchange, but is presently not fully understood. The second asparagine ladder (N243 and N279) in contrast remains more flexible.ISSN:2296-889

    Temperature-Dependent Solid-State NMR Proton Chemical-Shift Values and Hydrogen Bonding

    No full text
    [Image: see text] Temperature-dependent NMR experiments are often complicated by rather long magnetic-field equilibration times, for example, occurring upon a change of sample temperature. We demonstrate that the fast temporal stabilization of a magnetic field can be achieved by actively stabilizing the temperature of the magnet bore, which allows quantification of the weak temperature dependence of a proton chemical shift, which can be diagnostic for the presence of hydrogen bonds. Hydrogen bonding plays a central role in molecular recognition events from both fields, chemistry and biology. Their direct detection by standard structure-determination techniques, such as X-ray crystallography or cryo-electron microscopy, remains challenging due to the difficulties of approaching the required resolution, on the order of 1 Å. We, herein, explore a spectroscopic approach using solid-state NMR to identify protons engaged in hydrogen bonds and explore the measurement of proton chemical-shift temperature coefficients. Using the examples of a phosphorylated amino acid and the protein ubiquitin, we show that fast magic-angle spinning (MAS) experiments at 100 kHz yield sufficient resolution in proton-detected spectra to quantify the rather small chemical-shift changes upon temperature variations
    corecore