4 research outputs found

    Allosteric modulation of metabotropic glutamate receptor 4 activates IDO1-dependent, immunoregulatory signaling in dendritic cells

    Get PDF
    Metabotropic glutamate receptor 4 (mGluR4) possesses immune modulatory properties in vivo, such that a positive allosteric modulator (PAM) of the receptor confers protection on mice with relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE). ADX88178 is a newly-developed, one such mGluR4 modulator with high selectivity, potency, and optimized pharmacokinetics. Here we found that application of ADX88178 in the RR-EAE model system converted disease into a form of mild-yet chronic-neuroinflammation that remained stable for over two months after discontinuing drug treatment. In vitro, ADX88178 modulated the cytokine secretion profile of dendritic cells (DCs), increasing production of tolerogenic IL-10 and TGF-β. The in vitro effects required activation of a Gi-independent, alternative signaling pathway that involved phosphatidylinositol-3-kinase (PI3K), Src kinase, and the signaling activity of indoleamine 2,3-dioxygenase 1 (IDO1). A PI3K inhibitor as well as small interfering RNA targeting Ido1-but not pertussis toxin, which affects Gi protein-dependent responses-abrogated the tolerogenic effects of ADX88178-conditioned DCs in vivo. Thus our data indicate that, in DCs, highly selective and potent mGluR4 PAMs such as ADX88178 may activate a Gi-independent, long-lived regulatory pathway that could be therapeutically exploited in chronic autoimmune diseases such as multiple sclerosis

    Ageing and amyloid-beta peptide deposition contribute to an impaired brain tissue plasminogen activator activity by different mechanisms

    No full text
    Alzheimer’s disease (AD) is the most common form of neurodegenerative disorder in the ageing population. It is characterized by the cerebral accumulation of toxic amyloid-beta peptide assemblies (Aβ). The serine protease plasmin, which is generated from the inactive zymogen plasminogen through its proteolytic cleavage by tissue- (tPA) or urokinase-type plasminogen activator, has been implicated in the catabolism of Aβ peptides. In this report, we studied the regulation of tPA activity in vivo during ageing in normal mice and in a mouse model of AD characterized by an exacerbated endogenous Aβ accumulation. We observed that cerebral tPA activity was decreased during ageing in normal mice and that this effect was worsened in mice overproducing Aβ peptides. These phenomena result, respectively, from a decrease in tPA expression and from an increase in the production of one of the tPA inhibitors, the plasminogen activator inhibitor type 1 (PAI-1). A similar study in sporadic AD and age-matched control brain tissues revealed that the tPA proteolytic activity was negatively correlated to Aβ peptides levels supporting the data observed in mice. Altogether, our data support a model in which amyloid deposition induces a decrease in tPA activity through the overproduction of PAI-1 by activated glial cells.status: publishe
    corecore