83 research outputs found

    High- to low-latitude teleconnections during glacial terminations associated with ENSO-like variability

    Get PDF
    Long-term changes in ENSO-like dynamics during deglaciations are linked to southern high-latitude regions through atmospheric and oceanic teleconnection mechanisms

    North Atlantic millennial-scale climate variability 910 to 790 ka and the role of the equatorial insolation forcing

    Get PDF
    The Mid-Pleistocene transition (MPT) was the time when quasi-periodic (not, vert, similar 100 kyr), high-amplitude glacial variability developed in the absence of any significant change in the character of orbital forcing, leading to the establishment of the characteristic pattern of late Pleistocene climate variability. It has long been known that the interval around 900 ka stands out as a critical point of the MPT, when major glaciations started occurring most notably in the northern hemisphere. Here we examine the record of climatic conditions during this significant interval, using high-resolution stable isotope records from benthic and planktonic foraminifera from a sediment core in the North Atlantic (Integrated Ocean Drilling Program Expedition 306, Site U1313). We have considered the time interval from late in Marine Isotope Stage (MIS) 23 to MIS 20 (910 to 790 ka). Our data indicate that interglacial MIS 21 was a climatically unstable period and was broken into four interstadial periods, which have been identified and correlated across the North Atlantic region. These extra peaks tend to contradict previous studies that interpreted the MIS 21 variability as consisting essentially of a linear response to cyclical changes in orbital parameters. Cooling events in the surface record during MIS 21 were associated with low benthic carbon isotope excursions, suggesting a coupling between surface temperature changes and the strength of the Atlantic meridional overturning circulation. Time series analysis performed on the whole interval indicates that benthic and planktonic oxygen isotopes have significant concentrations of spectral power centered on periods of 10.7 kyr and 6 kyr, which is in agreement with the second and forth harmonic of precession. The excellent correspondence between the foraminifera δ18O records and insolation variations at the Equator in March and September suggests that a mechanism related to low-latitude precession variations, advected to the high latitudes by tropical convective processes, might have generated such a response. This scenario accounts for the presence of oscillations at frequencies equal to precession harmonics at Site U1313, as well as the occurrence of higher amplitude oscillations between the MIS22/21 transition and most of MIS 21, times of enhanced insolation variability

    Contrasting intrainterstadial climatic evolution between high and middle North Atlantic latitudes: A close-up of Greenland Interstadials 8 and 12

    Get PDF
    Three highly resolved pollen and sea surface temperature records from the Iberian margin (36â "42°N) reveal the local evolution of vegetation and climate associated with the rapid climatic variability of marine isotope stage 3. The comparison of the climate at these midlatitudes with δD and d excess from Greenland ice cores shows that the northâ south climatic gradient underwent strong variations during the long Greenland Interstadials (GIs) 8 and 12. After the Northern Hemispheric rapid warming at the Greenland Stadial (GS)â GI transition, the trend during the first part of the GI is a Greenland cooling and an Iberian warming. This increase of the North Atlantic climatic gradient led to moisture transportation to Greenland from midlatitudes (lightest d excess) and to a drying episode in Iberia. The subsequent temperature decrease in Greenland and Iberia associated with the precipitation increase in the latter region occurred when the major source of Greenland precipitation shifted to lower latitudes (d excess increase)

    Nitrogen isotopic evidence for deglacial changes in nutrient supply in the eastern equatorial Pacific

    Get PDF
    The Eastern Equatorial Pacific (EEP) is a high nutrientâ "low chlorophyll region of the ocean. Downcore nitrogen isotope records from the EEP have been previously interpreted as a direct reflection of changes in nutrient consumption. However, the observed changes in sedimentary δ15N since the last glacial maximum have no coherent relationship with export productivity or an inferred variation in the iron-to-nitrate ratio of the surface waters. Rather, downcore N isotope records in the EEP strongly resemble changes in the extent of water column denitrification as recorded in nearby sedimentary δ15N records along the western margin of the Americas. This similarity is attributed to the overprinting of the N isotopic composition of nitrate in the EEP through the advection of nitrate westward from the margins in the subsurface. A local nitrogen isotope record of changes in the degree of nutrient consumption is extracted from the bulk sedimentary record by subtracting two different sedimentary δ15N records of denitrification changes from two new EEP δ15N records (TR163-22 and ODP Site 1240). The denitrification records used are from 1) the Central American margin (ODP Site 1242) and 2) the South American margin (GeoB7139-2). The degree of consumption in the surface waters declines rapidly from elevated values during the last glacial maximum to a pair of minima around 15 and 11â "13 ka, and finally it increases into the Holocene. The derived EEP nitrogen isotope record indicates that the regional peak in export productivity occurred when the supply of nutrients exceeded the apparently high demand. The influx of nutrients during the deglaciation is attributed to the resumption of intense overturning in the Southern Ocean and the release of sequestered CO2 and nutrient-rich, O2 poor waters from the deep ocean. This has important implications for understanding the glacial-interglacial scale variation in intermediate water suboxia and water column denitrification

    Increased reservoir ages and poorly ventilated deep waters inferred in the glacial Eastern Equatorial Pacific.

    Get PDF
    Consistent evidence for a poorly ventilated deep Pacific Ocean that could have released its radiocarbon-depleted carbon stock to the atmosphere during the last deglaciation has long been sought. Such evidence remains lacking, in part due to a paucity of surface reservoir age reconstructions required for accurate deep-ocean ventilation age estimates. Here we combine new radiocarbon data from the Eastern Equatorial Pacific (EEP) with chronostratigraphic calendar age constraints to estimate shallow sub-surface reservoir age variability, and thus provide estimates of deep-ocean ventilation ages. Both shallow- and deep-water ventilation ages drop across the last deglaciation, consistent with similar reconstructions from the South Pacific and Southern Ocean. The observed regional fingerprint linking the Southern Ocean and the EEP is consistent with a dominant southern source for EEP thermocline waters and suggests relatively invariant ocean interior transport pathways but significantly reduced air-sea gas exchange in the glacial southern high latitudes

    Identification and removal of Mn-Mg-rich contaminant phases in foraminiferal tests: Implications for Mg/Ca past temperature reconstructions

    Get PDF
    The geochemical composition of foraminifera shells from an Ocean Drilling Program site in the Panama Basin has been analyzed by several analytical techniques (LA-ICP-MS, ICP-MS, XRD, SEM, EDX) in order to identify and evaluate the occurrence of contaminant phases which may bias paleoenvironmental reconstructions. LA-ICP-MS results on uncleaned tests indicate the presence of Mn-Mg-rich contaminant phases at the inner surfaces of the foraminiferal shells (which have Mn/Ca ratios up to 400 mmol mol-1 and Mg/Ca ratios up to 50 mmol mol-1). We have rigorously assessed the ability of different cleaning protocols to remove these contaminant phases and have obtained satisfactory results only when a reductive step is included. The analysis of cleaning residuals collected after each of the different cleaning steps applied reveals that high Mn values are associated with at least two different contaminant phases, of which only one is linked to high Mg values. XRD analysis further reveals that the Mn-Mg-rich phase is the Ca-Mn-Mg carbonate kutnahorite (Ca(Mn, Mg)(CO3)2). Our results demonstrate that the presence of kutnahorite-like minerals can bias Mg/Ca ratios toward higher values (by 7-36%) and lead to significant overestimation of past seawater temperatures (by 0.9 up to 6.2°C, in the case of these Panama Basin samples)

    Impact of suborbital climate changes in the North Atlantic on ice sheet dynamics at the Mid-Pleistocene Transition

    Get PDF
    Early and Mid-Pleistocene climate, ocean hydrography and ice sheet dynamics have been reconstructed using a high-resolution data set (planktonic and benthic delta O-18 time series, faunal-based sea surface temperature (SST) reconstructions and ice-rafted debris (IRD)) record from a high-deposition-rate sedimentary succession recovered at the Gardar Drift formation in the subpolar North Atlantic (Integrated Ocean Drilling Program Leg 306, Site U1314). Our sedimentary record spans from late in Marine Isotope Stage (MIS) 31 to MIS 19 (1069-779 ka). Different trends of the benthic and planktonic oxygen isotopes, SST and IRD records before and after MIS 25 (similar to 940 ka) evidence the large increase in Northern Hemisphere ice-volume, linked to the cyclicity change from the 41-kyr to the 100-kyr that occurred during the Mid-Pleistocene Transition (MPT). Beside longer glacial-interglacial (G-IG) variability, millennial-scale fluctuations were a pervasive feature across our study. Negative excursions in the benthic delta O-18 time series observed at the times of IRD events may be related to glacio-eustatic changes due to ice sheets retreats and/or to changes in deep hydrography. Time series analysis on surface water proxies (IRD, SST and planktonic delta O-18) of the interval between MIS 31 to MIS 26 shows that the timing of these millennial-scale climate changes are related to half-precessional (10 kyr) components of the insolation forcing, which are interpreted as cross-equatorial heat transport toward high latitudes during both equinox insolation maxima at the equator

    Holocene hydrography evolution in the Alboran Sea: a multi-record and multiproxy comparison

    Get PDF
    A new high-resolution deglacial and Holocene sea surface temperature (SST) reconstruction is presented for the Alboran Sea (western Mediterranean), based on Mg=Ca ratios measured in the planktonic foraminifera Globigerina bulloides. This new record is evaluated by comparison with other Mg=Ca SST records and previously published alkenone SST reconstructions from the same region for both the Holocene and glacial periods. In all cases there is a high degree of coherence between the different Mg=Ca SST records but strong discrepancies when compared to the alkenone SST records. We argue that these discrepancies are due to differences in the proxy response during deglaciation which we hypothesize to reflect a resilience strategy of G. bulloides, changing its main growth season, and consequently Mg=Ca records a shorter deglacial warming than alkenones. In contrast, short-term Holocene SST variability is larger in the Mg=Ca SST than in the alkenone SST records. We propose that the larger Mg=Ca SST variability is a result of spring temperatures variability, while the smoothed alkenone SST variability represents averaged annual temperatures. The Mg=Ca SST record differentiates the Holocene into three periods: (1) the warmest SST values occurred during the Early Holocene (11.7-9 cal. kyr BP), (2) a continuous cooling trend occurred during the Middle Holocene that culminated in the coldest Holocene SST having a double cold peak structure centred at around 4.2 cal. kyr BP, and (3) the Late Holocene (4.2 cal. kyr BP to present) did not follow any clear cooling/warming trend although millennial-scale oscillations were enhanced. This SST evolution is discussed in the context of the changing properties in the Atlantic inflow water associated with North Atlantic circulation conditions and also with local hydrographical and atmospheric changes. We propose that a tight link between North Atlantic circulation patterns and the inflow of surface waters into the Mediterranean played a major role in controlling Holocene climatic variability of this region

    Alternating Influence of Northern Versus Southern-Sourced Water Masses on the Equatorial Pacific Subthermocline During the Past 240 ka

    Get PDF
    The eastern equatorial Pacific (EEP) is a key area to understand past oceanic processes that control atmospheric CO2 concentrations. Many studies argue for higher nutrient concentrations by enhanced nutrient transfer via Southern Ocean Intermediate Water (SOIW) to the low-latitude Pacific during glacials. Recent studies, however, argue against SOIW as the primary nutrient source, at least during early Marine Isotope Stage 2 (MIS 2), as proxy data indicate that nutrients are better utilized in the Southern Ocean under glacial conditions. New results from the subarctic Pacific suggest that enhanced convection of nutrient-rich Glacial North Pacific Intermediate Water (GNPIW) contributes to changes in nutrient concentrations in equatorial subthermocline water masses during MIS 2. However, the interplay between SOIW versus GNPIW and its influence on the nutrient distribution in the EEP spanning more than one glacial cycle are still not understood. We present a carbon isotope (delta C-13) record of subthermocline waters derived from deep-dwelling planktonic foraminifera Globorotaloides hexagonus in the EEP, which is compared with published delta C-13 records around the Pacific. Results indicate enhanced influence of GNPIW during MIS 6 and MIS 2 compared to today with largest contributions of northern-sourced intermediate waters during glacial maxima. These observations suggest a mechanistic link between relative contributions of northern and southern intermediate waters and past EEP nutrient concentrations. A switch from increased GNPIW (decreased SOIW) to diminished GNPIW (enhanced SOIW) influence on equatorial subthermocline waters is recognized during glacial terminations and marks changes to modern-like conditions in nutrient concentrations and biological productivity in the EEP

    Persistent warm Mediterranean surface waters during the Roman period

    Get PDF
    Reconstruction of last millennia Sea Surface Temperature (SST) evolution is challenging due to the difficulty retrieving good resolution marine records and to the several uncertainties in the available proxy tools. In this regard, the Roman Period (1 CE to 500 CE) was particularly relevant in the socio-cultural development of the Mediterranean region while its climatic characteristics remain uncertain. Here we present a new SST reconstruction from the Sicily Channel based in Mg/Ca ratios measured on the planktonic foraminifer Globigerinoides ruber. This new record is framed in the context of other previously published Mediterranean SST records from the Alboran Sea, Minorca Basin and Aegean Sea and also compared to a north Hemisphere temperature reconstruction. The most solid image that emerges of this trans-Mediterranean comparison is the persistent regional occurrence of a distinct warm phase during the Roman Period. This record comparison consistently shows the Roman as the warmest period of the last 2 kyr, about 2 °C warmer than average values for the late centuries for the Sicily and Western Mediterranean regions. After the Roman Period a general cooling trend developed in the region with several minor oscillations. We hypothesis the potential link between this Roman Climatic Optimum and the expansion and subsequent decline of the Roman Empire
    corecore