1,152 research outputs found

    Drag force in a string model dual to large-N QCD

    Get PDF
    We compute the drag force exerted on a quark and a di-quark systems in a background dual to large-N QCD at finite temperature. We find that appears a drag force in the former setup with flow of energy proportional to the mass of the quark while in the latter there is no dragging as in other studies. We also review the screening length.Comment: 15 pages, typos removed, error corrected, refs adde

    New Supergravity Backgrounds Dual to N=1 SQCD-like Theories with N_f=2N_c

    Full text link
    We present new supergravity backgrounds generated by N_c D5-branes, wrapping the S^2 of the resolved conifold, in the presence of N_f = 2 N_c smeared flavor D5-branes. The smearing allows us to take their backreaction on the geometry into account. We discuss the consistency, stability, and supersymmetry of these types of setups. We find near horizon geometries that we expect to be supergravity duals of SQCD-like theories with N_f= 2N_c. From these backgrounds we numerically extract rectangular Wilson loops and beta functions of the dual field theory for the regime where our approximations are valid.Comment: 22+24 pages, 17 figures, Figure 12 replace

    No-Drag String Configurations for Steadily Moving Quark-Antiquark Pairs in a Thermal Bath

    Get PDF
    We investigate the behavior of stationary string configurations on a five-dimensional AdS black hole background which correspond to quark-antiquark pairs steadily moving in an N=4 super Yang-Mills thermal bath. There are many branches of solutions, depending on the quark velocity and separation as well as on whether Euclidean or Lorentzian configurations are examined.Comment: references added; statements corrected; eliminated computation of jet quenching parameter from Wilson loop of [Liu, Rajagopal, Wiedemann, hep-th/0605178] using Euclidean string configurations since those authors advocate [hep-th/0607062, footnote 14] the use of spacelike Lorentzian string configurations instea

    The Energy of a Moving Quark-Antiquark Pair in an N=4 SYM Plasma

    Full text link
    We make use of the AdS/CFT correspondence to determine the energy of an external quark-antiquark pair that moves through strongly-coupled thermal N=4 super-Yang-Mills plasma, both in the rest frame of the plasma and in the rest frame of the pair. It is found that the pair feels no drag force, has an energy that reproduces the expected 1/L (or gamma/L) behavior at small quark-antiquark separations, and becomes unbound beyond a certain screening length whose velocity-dependence we determine. We discuss the relation between the high-velocity limit of our results and the lightlike Wilson loop proposed recently as a definition of the jet-quenching parameter.Comment: LaTeX 2e, 27 pages, 8 eps figures; v2: added computation of the pair energy in the plasma rest frame, clarified the comparison with hep-ph/0607062, corrected typos, added reference

    Deep inelastic scattering off a N=4 SYM plasma at strong coupling

    Get PDF
    By using the AdS/CFT correspondence we study the deep inelastic scattering of an R-current off a N=4 supersymmetric Yang-Mills (SYM) plasma at finite temperature and strong coupling. Within the supergravity approximation valid when the number of colors is large, we compute the structure functions by solving Maxwell equations in the space-time geometry of the AdS_5 black three-brane. We find a rather sharp transition between a low energy regime where the scattering is weak and quasi-elastic, and a high-energy regime where the current is completely absorbed. The critical energy for this transition determines the plasma saturation momentum in terms of its temperature T and the Bjorken x variable: Q_s=T/x. These results suggest a partonic picture for the plasma where all the partons have transverse momenta below the saturation momentum and occupation numbers of order one.Comment: Version accepted for publication in JHEP: more references added; some technical points were displaced from Sect. 4 to the new Appendix

    Drag force in SYM plasma with B field from AdS/CFT

    Get PDF
    We investigate drag force in a thermal plasma of N=4 super Yang-Mills theory via both fundamental and Dirichlet strings under the influence of non-zero NSNS BB-field background. In the description of AdS/CFT correspondence the endpoint of these strings correspondes to an external monopole or quark moving with a constant electromagnetic field. We demonstrate how the configuration of string tail as well as the drag force obtains corrections in this background.Comment: 13 pages, 2 figures, more discussion and reference adde

    Baryon Binding Energy in Sakai-Sugimoto Model

    Full text link
    The binding energy of baryon has been studied in the dual AdS5×S5AdS_5\times S^5 string theory with a black hole interior. In this picture baryon is constructed of a D5D_5 brane vertex wrapping on S5S^5 and NcN_c fundamental strings connected to it. Here, we calculate the baryon binding energy in Sakai-Sugimoto model with a D4/D8/D8ˉD_4/D_8/\bar{D_8} in which the supersymmetry is completely broken. Also we check the TT dependence of the baryon binding energy. We believe that this model represents an accurate description of baryons due to the existence of Chern-Simones coupling with the gauge field on the brane. We obtain an analytical expression for the baryon binding energy . In that case we plot the baryon binding energy in terms of radial coordinate. Then by using the binding energy diagram, we determine the stability range for baryon configuration. And also the position and energy of the stable equilibrium point is obtained by the corresponding diagram. Also we plot the baryon binding energy in terms of temperature and estimate a critical temperature in which the baryon would be dissociated.Comment: 14 pages, 1 fi

    Indirect Collider Signals for Extra Dimensions

    Get PDF
    A recent suggestion that quantum gravity may become strong near the weak scale has several testable consequences. In addition to probing for the new large (submillimeter) extra dimensions associated with these theories via gravitational experiments, one could search for the Kaluza Klein towers of massive gravitons which are predicted in these models and which can interact with the fields of the Standard Model. Here we examine the indirect effects of these massive gravitons being exchanged in fermion pair production in \epem annihilation and Drell-Yan production at hadron colliders. In the latter case, we examine a novel feature of this theory, which is the contribution of gluon gluon initiated processes to lepton pair production. We find that these processes provide strong bounds, up to several TeV, on the string scale which are essentially independent of the number of extra dimensions. In addition, we analyze the angular distributions for fermion pair production with spin-2 graviton exchanges and demonstrate that they provide a smoking gun signal for low-scale quantum gravity which cannot be mimicked by other new physics scenarios.Comment: Corrected typos, added table and reference

    Stabilization of Sub-Millimeter Dimensions: The New Guise of the Hierarchy Problem

    Get PDF
    A new framework for solving the hierarchy problem was recently proposed which does not rely on low energy supersymmetry or technicolor. The fundamental Planck mass is at a \tev and the observed weakness of gravity at long distances is due the existence of new sub-millimeter spatial dimensions. In this picture the standard model fields are localized to a (3+1)(3+1)-dimensional wall or ``3-brane''. The hierarchy problem becomes isomorphic to the problem of the largeness of the extra dimensions. This is in turn inextricably linked to the cosmological constant problem, suggesting the possibility of a common solution. The radii of the extra dimensions must be prevented from both expanding to too great a size, and collapsing to the fundamental Planck length \tev^{-1}. In this paper we propose a number of mechanisms addressing this question. We argue that a positive bulk cosmological constant Λˉ\bar\Lambda can stabilize the internal manifold against expansion, and that the value of Λˉ\bar\Lambda is not unstable to radiative corrections provided that the supersymmetries of string theory are broken by dynamics on our 3-brane. We further argue that the extra dimensions can be stabilized against collapse in a phenomenologically successful way by either of two methods: 1) Large, topologically conserved quantum numbers associated with higher-form bulk U(1) gauge fields, such as the naturally occurring Ramond-Ramond gauge fields, or the winding number of bulk scalar fields. 2) The brane-lattice-crystallization of a large number of 3-branes in the bulk. These mechanisms are consistent with theoretical, laboratory, and cosmological considerations such as the absence of large time variations in Newton's constant during and after primordial nucleosynthesis, and millimeter-scale tests of gravity.Comment: Corrected referencing to important earlier work by Sundrum, errors fixed, additional discussion on radion phenomenology, conclusions unchanged, 23 pages, LaTe

    Neutrino Masses from Large Extra Dimensions

    Get PDF
    Recently it was proposed that the standard model (SM) degrees of freedom reside on a (3+1)(3+1)-dimensional wall or ``3-brane'' embedded in a higher-dimensional spacetime. Furthermore, in this picture it is possible for the fundamental Planck mass \mst to be as small as the weak scale \mst\simeq O(\tev) and the observed weakness of gravity at long distances is due the existence of new sub-millimeter spatial dimensions. We show that in this picture it is natural to expect neutrino masses to occur in the 10^{-1} - 10^{-4}\ev range, despite the lack of any fundamental scale higher than \mst. Such suppressed neutrino masses are not the result of a see-saw, but have intrinsically higher-dimensional explanations. We explore two possibilities. The first mechanism identifies any massless bulk fermions as right-handed neutrinos. These give naturally small Dirac masses for the same reason that gravity is weak at long distances in this framework. The second mechanism takes advantage of the large {\it infrared} desert: the space in the extra dimensions. Here, small Majorana neutrino masses are generated by breaking lepton number on distant branes.Comment: 17 pages, late
    • …
    corecore