476 research outputs found

    Continuum Superpartners

    Full text link
    In an exact conformal theory there is no particle. The excitations have continuum spectra and are called "unparticles" by Georgi. We consider supersymmetric extensions of the Standard Model with approximate conformal sectors. The conformal symmetry is softly broken in the infrared which generates a gap. However, the spectrum can still have a continuum above the gap if there is no confinement. Using the AdS/CFT correspondence this can be achieved with a soft wall in the warped extra dimension. When supersymmetry is broken the superpartners of the Standard Model particles may simply be a continuum above gap. The collider signals can be quite different from the standard supersymmetric scenarios and the experimental searches for the continuum superpartners can be very challenging.Comment: 15 pages, 5 figures, talk at SCGT09 Workshop, Nagoya, Japan, 8-11 Dec, 200

    Electroweak Precision Observables and the Unhiggs

    Full text link
    We compute one-loop corrections to the S and T parameters in the Unhiggs scenario. In that scenario, the Standard Model Higgs is replaced by a non-local object, called the Unhiggs, whose spectral function displays a continuum above the mass gap. The Unhiggs propagator has effectively the same UV properties as the Standard Model Higgs propagator, which implies that loop corrections to the electroweak precision observables are finite and calculable. We show that the Unhiggs is consistent with electroweak precision tests when its mass gap is at the weak scale; in fact, it then mimics a light SM Higgs boson. We also argue that the Unhiggs, while being perfectly visible to electroweak precision observables, is invisible to detection at LEP.Comment: 13 pages; v2: references added, discussion of production cross-section expande

    The Minimal Set of Electroweak Precision Parameters

    Full text link
    We present a simple method for analyzing the impact of precision electroweak data above and below the Z-peak on flavour-conserving heavy new physics. We find that experiments have probed about ten combinations of new physics effects, which to a good approximation can be condensed into the effective oblique parameters Shat, That, Uhat, V, X, W, Y (we prove positivity constraints W, Y >= 0) and three combinations of quark couplings (including a distinct parameter for the bottom). We apply our method to generic extra Z' vectors.Comment: 22 pages, 3 figure

    Superluminal neutrinos in long baseline experiments and SN1987a

    Get PDF
    Precise tests of Lorentz invariance in neutrinos can be performed using long baseline experiments such as MINOS and OPERA or neutrinos from astrophysical sources. The MINOS collaboration reported a measurement of the muonic neutrino velocities that hints to super-luminal propagation, very recently confirmed at 6 sigma by OPERA. We consider a general parametrisation which goes beyond the usual linear or quadratic violation considered in quantum-gravitational models. We also propose a toy model showing why Lorentz violation can be specific to the neutrino sector and give rise to a generic energy behaviour E^alpha, where alpha is not necessarily an integer number. Supernova bounds and the preferred MINOS and OPERA regions show a tension, due to the absence of shape distortion in the neutrino bunch in the far detector of MINOS. The energy independence of the effect has also been pointed out by the OPERA results.Comment: 22 pages, 7 figures; comment on Cherenkov emission added, version matching JHEP published pape

    Field Theory on Multi-throat Backgrounds

    Get PDF
    We consider extra dimensional field theory descriptions of backgrounds with N different throats where one of the extra dimensions in each throat is much larger than the others. Such backgrounds can be described by field theory on N 5D warped spaces which intersect on a ultraviolet (UV) brane. Given a field that propagates in all N throats there are N boundary conditions on the UV brane (which are determined by the effective Lagrangian on the UV brane) in addition to the boundary conditions on the N infrared branes. We derive a general set of UV boundary conditions and give examples of how they are applied to particular situations. Three simple example applications are given: in the first the number of families is determined by the number of throats and the SUSY flavor problem is solved via an S_3 symmetry of the throats; in the second we embed this scenario in a SUSY GUT with a solution of the doublet-triplet splitting problem based on the product group approach; while in the final example we show a simple geometric implementation of a SUSY trinification model on three throats

    The Universal Real Projective Plane: LHC phenomenology at one Loop

    Full text link
    The Real Projective Plane is the lowest dimensional orbifold which, when combined with the usual Minkowski space-time, gives rise to a unique model in six flat dimensions possessing an exact Kaluza Klein (KK) parity as a relic symmetry of the broken six dimensional Lorentz group. As a consequence of this property, any model formulated on this background will include a stable Dark Matter candidate. Loop corrections play a crucial role because they remove mass degeneracy in the tiers of KK modes and induce new couplings which mediate decays. We study the full one loop structure of the corrections by means of counter-terms localised on the two singular points. As an application, the phenomenology of the (2,0) and (0,2) tiers is discussed at the LHC. We identify promising signatures with single and di-lepton, top antitop and 4 tops: in the dilepton channel, present data from CMS and ATLAS may already exclude KK masses up to 250 GeV, while by next year they may cover the whole mass range preferred by WMAP data.Comment: 45 pages, 3 figure

    Oblique Corrections from Higgsless Models in Warped Space

    Full text link
    We calculate the tree-level oblique corrections to electroweak precision observables generated in higgless models of electroweak symmetry breaking with a 5D SU(2)_L x SU(2)_R x U(1)_{B-L} gauge group on a warped background. In the absence of brane induced kinetic terms (and equal left and right gauge couplings) we find the S parameter to be ~1.15, while T,U~0, as in technicolor theories. Planck brane induced kinetic terms and unequal left-right couplings can lower S, however for sufficiently low values of S tree-level unitarity will be lost. A kinetic term localized on the TeV brane for SU(2)_D will generically increase S, however an induced kinetic term for U(1)_{B-L} on the TeV brane will lower S. With an appropriate choice of the value of this induced kinetic term S~0 can be achieved. In this case the mass of the lowest Z' mode will be lowered to about ~300 GeV.Comment: 18 pages, LaTeX, 2 figures include

    Composite Higgs Sketch

    Full text link
    The coupling of a composite Higgs to the standard model fields can deviate substantially from the standard model values. In this case perturbative unitarity might break down before the scale of compositeness is reached, which would suggest that additional composites should lie well below this scale. In this paper we account for the presence of an additional spin 1 custodial triplet of rhos. We examine the implications of requiring perturbative unitarity up to the compositeness scale and find that one has to be close to saturating certain unitarity sum rules involving the Higgs and the rho couplings. Given these restrictions on the parameter space we investigate the main phenomenological consequences of the spin 1 triplet. We find that they can substantially enhance the Higgs di-photon rate at the LHC even with a reduced Higgs coupling to gauge bosons. The main existing LHC bounds arise from di-boson searches, especially in the experimentally clean channel where the charged rhos decay to a W-boson and a Z, which then decay leptonically. We find that a large range of interesting parameter space with 700 GeV < m(rho) < 2 TeV is currently experimentally viable.Comment: 37 pages, 12 figures; v4: sum rule corrected, conclusions unchange

    Curing the Ills of Higgsless Models: the S Parameter and Unitarity

    Full text link
    We consider various constraints on Higgsless models of electroweak symmetry breaking based on a bulk SU(2)_L x SU(2)_R x U(1)_{B-L} gauge group in warped space. First we show that the S parameter which is positive if fermions are localized on the Planck brane can be lowered (or made vanishing) by changing the localization of the light fermions. If the wave function of the light fermions is almost flat their coupling to the gauge boson KK modes will be close to vanishing, and therefore contributions to the S parameter will be suppressed. At the same time the experimental bounds on such Z' and W' gauge bosons become very weak, and their masses can be lowered to make sure that perturbative unitarity is not violated in this theory before reaching energies of several TeV. The biggest difficulty of these models is to incorporate a heavy top quark mass without violating any of the experimental bounds on bottom quark gauge couplings. In the simplest models of fermion masses a sufficiently heavy top quark also implies an unacceptably large correction to the Zb\bar{b} vertex and a large splitting between the KK modes of the top and bottom quarks, yielding large loop corrections to the T-parameter. We present possible directions for model building where perhaps these constraints could be obeyed as well.Comment: 21 pages, LaTeX, 5 figures. References and acknowledgements adde
    • …
    corecore