2 research outputs found
Unlocking the human inner ear for therapeutic intervention
The human inner ear contains minute three-dimensional neurosensory structures that are deeply embedded within the skull base, rendering them relatively inaccessible to regenerative therapies for hearing loss. Here we provide a detailed characterisation of the functional architecture of the space that hosts the cell bodies of the auditory nerve to make them safely accessible for the first time for therapeutic intervention. We used synchrotron phase-contrast imaging which offers the required microscopic soft-tissue contrast definition while simultaneously displaying precise bony anatomic detail. Using volume-rendering software we constructed highly accurate 3-dimensional representations of the inner ear. The cell bodies are arranged in a bony helical canal that spirals from the base of the cochlea to its apex; the canal volume is 1.6 μL but with a diffusion potential of 15 μL. Modelling data from 10 temporal bones enabled definition of a safe trajectory for therapeutic access while preserving the cochlea’s internal architecture. We validated the approach through surgical simulation, anatomical dissection and micro-radiographic analysis. These findings will facilitate future clinical trials of novel therapeutic interventions to restore hearing
A novel therapeutic pathway to the human cochlear nerve
Traditional approaches to the human cochlear nerve have been impeded by its bony encasement deep inside the skull base. We present an innovative, minimally invasive, therapeutic pathway for direct access to the nerve to deliver novel regenerative therapies. Neuroanatomical studies on 10 cadaveric human temporal bones were undertaken to identify a potentially safe therapeutic pathway to the cochlear nerve. Simulations based on three-dimensional delineation of anatomical structures obtained from synchrotron phase-contrast imaging were analyzed. This enabled the identification of an approach to the nerve in the fundus of the internal auditory meatus by trephining the medial modiolar wall of the cochlea via the round window for a median depth of 1.48 mm (range 1.21-1.91 mm). The anatomical access was validated on 9 additional human temporal bones using radio-opaque markers and contrast injection with micro-computed tomography surveillance. We thus created an effective conduit for the delivery of therapeutic agents to the cochlear nerve
