13 research outputs found

    Teucrium polium: Potential Drug Source for Type 2 Diabetes Mellitus

    Get PDF
    The prevalence of type 2 diabetes mellitus is rising globally and this disease is proposed to be the next pandemic after COVID-19. Although the cause of type 2 diabetes mellitus is unknown, it is believed to involve a complex array of genetic defects that affect metabolic pathways which eventually lead to hyperglycaemia. This hyperglycaemia arises from an inability of the insulin-sensitive cells to sufficiently respond to the secreted insulin, which eventually results in the inadequate secretion of insulin from pancreatic β-cells. Several treatments, utilising a variety of mechanisms, are available for type 2 diabetes mellitus. However, more medications are needed to assist with the optimal management of the different stages of the disease in patients of varying ages with the diverse combinations of other medications co-administered. Throughout modern history, some lead constituents from ancient medicinal plants have been investigated extensively and helped in developing synthetic antidiabetic drugs, such as metformin. Teucrium polium L. (Tp) is a herb that has a folk reputation for its antidiabetic potential. Previous studies indicate that Tp extracts significantly decrease blood glucose levels r and induce insulin secretion from pancreatic β-cells in vitro. Nonetheless, the constituent/s responsible for this action have not yet been elucidated. The effects appear to be, at least in part, attributable to the presence of selected flavonoids (apigenin, quercetin, and rutin). This review aims to examine the reported glucose-lowering effect of the herb, with a keen focus on insulin secretion, specifically related to type 2 diabetes mellitus. An analysis of the contribution of the key constituent flavonoids of Tp extracts will also be discussed

    DETERMINATION OF CELL TYPE AND HAEMOCYTE MORPHOMETRIC CHARACTERISTICS OF WESTERN AUSTRALIA FRESHWATER CRAYFISH (Cherax cainii) AT DIFFERENT TEMPERATURES IN VITRO

    Get PDF
    The purpose of this study was to identify and morphologically characterize the hemocyte cell types of freshwater crayfish, Cherax cainii. In addition to morphological observations using a light microscope (LM) and electron transmission microscope (TEM), a flow cytometer (FCM) is also used. Three main types of haemocyte of C. cainii were identified by LM, TEM, and FCM. Determination of haemocyte by LM based on the number, size of cytoplasmic granules and the ratio of N:C. These cells are Hyaline (HC), Small Granule (SGC), and Large Granule (LGC) cells. Three types of haemocyte were also observed by TEM based on cell and nucleus size, granule diameter, number of cytoplasmic granules per cell and N:C. Haemocyte population was successfully detected with FCM based on forward scatter (FSC) signals, versus side scattering signals/side scatter (SSC), with plot data via scatter parameter gating. Three cluster formations were observed, which were temporarily classified as SGC, LGC, and HC regions. Morphometric analysis was performed with TEM on C. cainii haemocyte to measure various cellular features. Some morphological features vary between types of haemocyte and are also affected by temperature. Total hemocyte count (THC) and differential hemocyte count (DHC) are calculated using FCM. THC increases with higher temperatures, from 1,9 x 106 /ml at 20 °C to 4.9 x 106 /ml at 30 °C.  The most abundant hemocyte at all temperatures is HC, followed by SGC and LGC

    Skin Electroporation

    No full text

    Screening for antidiabetic activities

    No full text
    Screening extracts and drug entities for antidiabetic bioactivity is essentially limited to animal models as the processes leading to hyperglycemia and the complications of diabetes involve more than one organ. Further, in vitro results seldom translate into meaningful in vivo outcomes especially in a disease such as Diabetes Mellitus. In vivo studies on specialized animal models have allowed great progress in tailoring research questions towards individualized genetic and biochemical contributors and their effect on the pathogenesis of the disease processes. Various disease models have been used either through genetic-manipulation (transgenic models) or through chemical induction (disease-induced models). Although there is a surplus of animal models (spontaneous and induced) to study Type I and Type II diabetes, there is no ideal or standard model for studying the individualized effects of various classes of antidiabetic drugs. Rodents, most commonly rats and mice, have been used by researchers as animal models of the disease and both normoglycemic and diabetic animals are used to assess the antidiabetic activities of drugs or extracts under investigation. Screening for antidiabetic activities can be achieved by measuring a wide range of biomarkers and end points including blood glucose and insulin levels. © 2013 Springer Science+Business Media, LLC

    Acyl lipidation of a peptide: effects on activity and epidermal permeability in vitro

    No full text
    Short-chain lipid conjugates can increase permeability of a small peptide across human epidermis; however, the emerging lipoaminoacid (LAA) conjugation technique is costly and can deliver mixed synthetic products of varied biological potential. LAA conjugation using a racemic mixture produces a mixture of D- and L-stereoisomers. Individual enantiomers can be produced at an extra cost. We investigated an affordable technique that produces only one synthetic product: short-chain (C7–C8) acyl lipidation. Acyl lipidation of Ala-Ala-Pro-Val, an inhibitor of human neutrophil elastase (HNE; believed to lead to abnormal tissue destruction and disease development), was investigated as an alternative to LAA conjugation. The current study aimed to assess the effects of acyl lipidation (either at the N-terminal or at the C-terminal) on neutrophil elastase activity in vitro and on transdermal delivery ex vivo. The inhibitory capacity of the acyl conjugates was compared to LAA conjugates (conjugated at the N-terminal) of the same peptide. The L-stereoisomer appears to rapidly degrade, but it represents a significantly (P<0.05) better inhibitor of HNE than the parent peptide (Ala-Ala-Pro-Val). Although the D-stereoisomer appears to permeate human epidermal skin sections in a better fashion than the L-stereoisomer, it is not a significantly better inhibitor of HNE than the parent peptide. Acyl lipidation (with a C7 lipid chain) at either end of the peptide substantially enhances the permeability of the peptide across human skin epidermis as well as significantly (P<0.005) increases its elastase inhibitory potential. Therefore, our current study indicates that acyl lipidation of a peptide is a more economical and effective alternative to LAA conjugation

    An evaluation of community pharmacists’ understanding of autism spectrum disorder: a cross-sectional study in Western Australia

    No full text
    © 2019 Royal Pharmaceutical Society Objectives: To assess the knowledge and understanding of autism spectrum disorder (ASD) by community pharmacists, across Western Australia (WA) and evaluate the extent to which they incorporate ASD friendly practices in their pharmacy. Methods: A cross-sectional study involved a postal questionnaire sent to a stratified random sample of 250 community pharmacies across WA. A score of ≥10/13 (≥76.9%) appropriate responses to selected questions was considered an indication of ‘good knowledge’ of ASD. Univariate associations between ‘good knowledge’ and variables in the questionnaire were analysed using chi-square statistics, and multivariate analysis was performed using a logistic regression model. Demographic data relating to the pharmacy were used to determine the likelihood it was ASD friendly. Key findings: Overall, 97/250 (38.8%) questionnaires were returned. There were 34/96 (35.4%) respondents classified as having ‘good knowledge’. Stigma surrounding ASD was the single best indicator of ‘good knowledge’ (P < 0.0001). None of the respondents indicated they catered specifically for ASD, and 38/97 (39.2%) reported that no changes were needed to their pharmacy to improve accessibility. There were a number of demographic features that increased the likelihood that pharmacies had the potential to be ASD friendly. Conclusions: Pharmacists overall had a basic understanding of ASD. Pharmacists who identified that stigma surrounding ASD existed in the community were more likely to achieve ‘good knowledge’. There was a reluctance to improve pharmacy accessibility to patients with ASD. Pharmacists did not appear to incorporate ASD beneficial practices into their pharmacy and pharmacy environment

    Liquid chromatography assay for 5-aminolevulinic acid: Application to in vitro assessment of skin penetration via Dermaportation

    No full text
    The purpose of the present study was to develop a reverse-phase high performance liquid chromatographic (HPLC) assay for quantifying 5-aminolevulinic acid (ALA). The assay was applied to study the skin permeation of ALA and the influence of a novel skin penetration enhancement technology. Separation was achieved utilizing a Phenomenex Jupiter C-18 column following fluorescence derivatization with fluorescamine. The assay was linear (r(2) > 0.99) with a minimum limit of quantitation of 400 ng/mL. The inter- and intraday variation was 1.6 and 0.9% at the lower end of the linear range and 1.5 and 1.9% at the upper end, respectively. The HPLC assay and fluorescence derivatization procedure is sensitive, simple, rapid, accurate and reproducible and offers advantages with regard to stability of ALA in comparison to other fluorescence derivatization methods. Results from the preliminary skin permeation study demonstrated substantial skin penetration of ALA only when applied with Dermaportation as a skin penetration enhancement device. (c) 2007 Elsevier B.V. All rights reserved

    Transdermal delivery of a tetrapeptide: Evaluation of passive diffusion

    No full text
    Skin penetration of the tetrapeptide Ac-Ala-Ala-Pro-Val-NH2 was assessed. This peptide sequence fits the P-P-1 subsites of elastase and inhibits human neutrophil elastase competitively. Consequently this peptide may be therapeutically useful in a variety of inflammatory disorders, including psoriasis. in which elevated levels of human neutrophil elastase have been reported. Peptide penetration was assessed across whole human skin, whole skin with the stratum corneum removed by tape stripping and epidermis, which had been removed from the dermis by heat separation. The influence of 75% aqueous ethanol as a potential penetration enhancer of the tetrapeptide across epidermis was also assessed. The tetrapeptide did not penetrate whole human skin or epidermis, even under the influence of 75% aqueous ethanol. However, when the stratum corneum was removed tetrapeptide flux of 73.39 mug cm(-2) h(-1) was achieved. The study demonstrates that the stratum corneum is the main barrier to tetrapeptide skin penetration and must be overcome if therapeutically relevant amounts of tetrapeptide are to be delivered to the skin
    corecore