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1. Introduction 

An autoimmune disorder (AD) is a condition in which the immune system mistakenly 

attacks its own body cells through the production of antibodies that target certain tissues. 

Such attack triggers further inflammation that result in more attacks and a significant 

inflammatory response leading to tissue destruction and cessation of functionality [1]. ADs 

include diabetes, rheumatoid arthritis, Graves' disease, systemic lupus and inflammatory 

bowel disease (IBD) [2]. ADs are on the rise worldwide and have major health implications 

from the diseases themselves as well as complications. Even though the causes of AD have 

been postulated to be genetic and environmental, the actual triggers remain poorly defined 

[3]. Genetic predisposition contribute to about 30% of AD while 70% to environmental 

factors such as infections (e.g., virus, bacteria) and lifestyle-associated factors such as food. 

Recent data show that AD has prevalence of 6-8% and are currently affecting 400 million 

people worldwide, with the majority of all those affected being women. Previous figures 

underestimated the scope of the problem, while even the most pessimistic predictions fell 

short of the current figure. It is predicted that the total number of people living with AD will 

increase drastically within the coming thirty years if no new and substantially more effective 

drugs are produced [4]. On 2009, estimated health costs of autoimmune disorders have 

exceeded 100 billion dollars only in the US. This adds to the cost generated from higher 

rate of hospitalization, higher mortality rate, and impaired performance of workers with 

the disease [5]. AD is a condition that incorporates various metabolic disturbances and 

inflammatory physiological and biochemical reactions including blood dyscrasias and 

endocronological and pathophysiological imbalances. Of recently, gastrointestinal 

abnormalities have been directly linked to the initiation and progression of autoimmune 

diseases especially slower gut movement (gastroparesis) and microfloral overgrowth 

(especially of fermentation bacteria and yeasts due to the slightly more acidic gut 

contents). Improving AD complications, reducing prevalence and restoring normal 
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physiological patterns should significantly optimise treatment outcomes and the quality 

of life for patients. 

In healthy individuals, the immune system prevents self-attack by two main routes. Firstly, 

by neutralizing dysfunctional lymphocytes in the thymus before they start attacking own 

body cells. This results in preventing the initiation of inflammation and progression of the 

autoimmune symptoms. Secondly, when dysfunctional lymphocytes are released into the 

mainstream, the immune system minimizes their ability to interact with triggers (antigens) 

through direct and indirect effects [6-8]. This results in a significant reduction in the severity 

of potential inflammatory response. Accordingly, treating AD can be achieved by either 

replacing the function of the damaged tissues (e.g. through injecting insulin when treating 

Type 1 diabetes, T1D) or suppressing the dysfunctional immune cells (e.g. through steroid 

therapy) [9-11].  

Generally, clinical and laboratory research has suggested that certain immune cells called B-

cells may have a stronger influence on the development and progression of various 

autoimmune diseases than previously thought [12]. Inflammatory cells attack different 

organs in different autoimmune disorders. In T1D, the autoimmune system attacks the β-

cells of the pancreas triggering an inflammatory reaction, which results in the destruction of 

these cells and the cessation of insulin production [13]. In rheumatoid arthritis, rheumatoid 

factor antibodies are produced by the immune system and are interact with γ globulin 

(blood proteins) forming a complex that triggers inflammation that targets muscles and 

bones [14]. In Graves’s diseases, an autoimmune disease of the thyroid gland, antibodies are 

produced against the thyroid protein thyroglobulin. These antibodies are called Thyroid 

Stimulating Hormones Receptors (TSHR) antibodies results in the increase in thyroid 

synthesis and section and thyroid growth as well as all accompanying symptoms [15-17]. In 

some autoimmune blood disorders, antibodies are produced against the body red and white 

blood cells, while in other autoimmune disorders, antibodies attack a wide range of tissues 

and organs resulting in more debilitating symptoms [18]. In systemic lupus, antibodies 

target antigens that are present in nucleic acids and cell organelles such as ribosomes and 

mitochondria. Lupus can cause dysfunction of many organs, including the heart, kidneys, 

and joints [19]. IBDs include two main conditions, ulcerative colitis and Crohn's disease. The 

inflammation in both conditions can affect the small and large intestine and sometimes other 

parts of the digestive system. Generally, ulcerative colitis is limited to the colon, primarily 

affecting the mucosa and the lining of the colon. Extensive inflammation gives rise to small 

ulcerations and microscopic abscesses that produce bleeding which exacerbate further the 

inflammatory response and worsen symptoms. Crohn's disease affects the small and large 

intestine, and rarely the stomach or oesophagus.  

Many ADs have been characterized by a compromised gut movement which has been 

linked to the disturbed immune system and can result in substantial gut bacterial and yeast 

overgrowth [20-24]. Such an overgrowth is postulated to disturb body physiological and 

biochemical reactions and exacerbate the autoimmune-associated inflammation. This has 

also been linked to long term complications and weaker prognosis resulting in poor drug 

response and worsening quality of life [25, 26].  
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Diagnosing autoimmune diseases can be particularly difficult, because these disorders can 

affect any organ or tissue in the body and produce a wide variety of signs and symptoms. 

Many early symptoms of these disorders — such as fatigue, joint and muscle pain, fever or 

weight change — are nonspecific. Symptoms are often not apparent until the disease has 

reached a relatively advanced stage. Accordingly, prevention in most susceptible 

individuals and early diagnosis are two most important approaches, when researching the 

future therapy for autoimmune diseases. 

ADs include wide range of inflammatory disease models that are characterized by the 

presence of a colossal inflammatory response. The trigger of the inflammation is versatile 

and complex with many hypotheses ranging from ingested toxins to idiopathic causes [9, 18, 

27]. However, genetic influence remains a strong cause and is considered a contributing 

factor for the development and progression of these diseases. AD-associated inflammation 

can cause chemical unbalance that has been linked to poor tissue sensitivity to drug 

stimulation, rise in the levels of reactive radicals in the blood, poor enterohepatic 

recirculation and negatively affecting liver detoxification and performance. The level and 

extent of tissue damage depend on the severity of the inflammatory response and varies in 

different disease models. Accordingly, future therapy should focus not only on symptomatic 

relief, but also on rectifying the disturbances in body physiology and associated short and 

long term complications. These disturbances may affect the whole body and have been 

strongly linked to inflammatory lymph nodes in the gut walls. Thus, future therapy should 

also focus on normalizing gut disturbed immune response, which can be achieved through 

normalizing the composition of bile acids and microflora, gut immune-response and 

microflora-epithelial interactions towards maintaining normal biochemical reactions and 

healthy body physiology.  

Of recently, the applications of probiotics in autoimmune diseases have gained great interest 

due to the feasibility of their administration and also their safety. A good example is 

hypoglycemic effect of probiotics in a rat model of Type 1 diabetes [28]. Possible 

mechanisms of actions include their anti-inflammatory effect resulting in a significant 

reduction in diabetes progression and complications [24]. This can be brought about 

through the normalization of gut disturbed-microflora by the administered probiotic-

bacteria. Interesting, probiotic co-administration with a sulphonylureas antidiabetic drug 

has shown to reduce inflammation and ameliorate diabetes complications suggesting a 

significant role and great potential of probiotic applications as anti-inflammatory adjunct 

therapy.  

Probiotics are dietary supplements containing bacteria which, when administered in 

adequate amounts, confer a health benefit on the host. Combinations of different bacterial 

strains can be used but a mixture of Lactobacilli and Bifidobacteria is a common choice. 

Probiotics have been shown to be beneficial in a wide range of conditions including 

infections, allergies, metabolic disorders such as diabetes mellitus, ulcerative colitis and 

Crohn’s disease. 
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This chapter aims to explore the changes in gut microflora, physiology and metabolic 

pathways which are associated with the autoimmune diseases. A great focus will be on the 

potential application of probiotics on rectifying the disturbed gut composition associated 

with these diseases and whether such intervention can prevent or even treat these diseases.  

2. Autoimmune-associated disturbances in gut microflora 

The initial set of gut microfloral composition in human starts during birth. The physical 

structure of the gut is altered by the presence of microorganisms during growth. Once 

matured, the integrity of the epithelial barrier is maintained by the presence of these same 

microbes. Accordingly, the mother’s microflora is considered a source of the infant own 

initial gut bacterial colonization, which is then influenced by the mother’s milk, tissues’ 

growth, the maturation of the immune system, as well as other factors. Gut motility and 

contents have been emerging as an important area of research when investigating the origin 

and potential therapeutics of autoimmune disease. Many patients with autoimmune disease 

have shown strong evidence of disturbances in the composition of gut microflora and the 

subsequent toxin buildup and other associated physiological and biochemical abnormalities 

[29]. A good example is Type 1 diabetic patients. Although the pathogenesis of T1D remains 

unclear, there is strong evidence supporting the hypothesis that the trigger leading to T1D, 

starts in the gut of genetically susceptible individuals [30, 31]. This inflammation causes 

major disturbances in both, the gut microfloral composition and bile acids ratios. This 

results in ongoing inflammatory response that brings about the destruction of pancreatic 

tissues and subsequent cessation of insulin production leading to clinical signs and 

symptoms of Type 1 diabetes. Another good example showing disturbed microfloral 

composition is IBD. Patients with IBD have shown clear shift of the gut microfloral 

composition towards less lactic acid-producing bacteria. In addition, the relative load of 

some species of colon-associated bacteria such as Bifidobacteria shows little presence in 

the gut of IBD patients indicating less bacterial-synchronization and disturbed quorum 

sensing processes in such patients. Interestingly, antibiotics are used in IBD to treat 

infective complications and to improve symptoms through altering the gut microfloral 

composition [32].  

Maintenance of the physical integrity of the gut is essential to limit penetration of harmful 

bacteria. Dorsal to the epithelial layer in the gastrointestinal tract is a protective mucous gel 

layer which is altered by the existing microbial colonies. The neutral pH of the epithelium is 

preserved by the mucin, which creates a gradient to the acidic contents of the gut. It acts as a 

physical barrier to block microorganisms from adhering to the underlying epithelium and 

prevents sheer stress on the gut. The spread of harmful xenobiotics through the gut is limited 

by the mucin, which is normally a thick and viscous layer. In a germ-free environment the 

mucous layer is thinner and has a different mucin content and composition. Recent literature 

has shown that in ulcerative colitis and, to a lesser extent, Crohn's disease are associated with a 

significant reduction of the protective gut-mucus layer, however, the role of this alteration in 

the pathogenesis of both diseases remain unclear [33].  
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Localized inflammatory responses are modulated by the gut microfloral bacteria that seek to 

establish an ideal environment for their growth. The gut microfloral bacteria also alter 

inflammatory mediators which utilize the lymphatic system for transport, altering sites of 

inflammation outside the gut. 

Intercellular interactions can also change gut permeability and are influenced by gut 

microflora. Zonula occludens are proteins that provide a structural framework to cells and 

seal the space between them, preventing the movement of ions across the barrier. A number 

of pathogenic bacteria and parasites target these epithelial cell membranes to increase the 

gut vulnerability to penetration. Comparatively, the presence of some beneficial bacteria can 

increase the expression of zonula occludens at tight junctions, improving epithelial integrity 

and cell-cell adhesiveness.  

It is important to stress the fact that both, the complexity and versatility of gut microflora, 

remain major challenges to precisely be able to measure the changes in bacterial 

composition in diseases patients and compare that to healthy ones. In addition, the effect of 

food, drug consumption, gender and age may also influence gut microfloral composition 

adding complexity when comparing healthy versus disease states. To complicate this 

further, the interaction between bile acids and gut microflora has a significant effect on the 

density, composition, type, colonization and quorum sensing processes of various strains of 

gut bacteria, thus, making bile acids (BA) a major component of the bacterial-ecosystem that 

exists in the gut. This necessitates including bile acids, with when investigating 

autoimmune-associated disturbances in gut microbiota.  

BAs are naturally produced in human. They are known to provide human with health 

benefits through their endocronological, microfloral, metabolic and other known and 

unknown effects. Disturbances in bile acids composition and functionality may cause tissue 

damage and eventual necrosis due to higher than normal concentrations of potent bile acids 

such as lithocholic acid compared with less potent bile acids such as chenodeoxycholic acid 

[34]. The nature of the interaction between gut microflora and bile acids is based on the fact 

that secondary bile acids are solely produced by the action of gut microflora. Gut microflora 

activates primary bile acids to secondary bile acids. This interaction between bile acid 

composition and the composition of gut microflora represents the base of the hypothesized 

linking between bile acid, gut microflora and energy balance. However, even though the 

compositions of bile acids and gut microflora are reported to be different in diabetic patients 

[35], it is still not clear how these changes directly affect the development and progression of 

diabetes or its complications. These complications include cardiovascular, tissue necrosis 

and ulcerations, and metabolic disturbances.  

T1D is a good example of a common autoimmune disease which is on the rise worldwide. 

Even though the composition of gut microflora has been reported to be different in T1D 

patients, it may be difficult to quantify or qualify such a difference. Gut microflora interacts 

closely with the body immune system and has shown to control the immune response to 

various inflammatory stimuli. The mechanism of action of probiotics could be one or more 

of the following. Firstly, by competitive exclusion, where gut microfloral bacteria resist 
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colonization of other 'foreign' bacteria. Secondly, by barrier formation where the microflora 

forms a physical barrier reducing bacterial translocation by forming a wall surrounding the 

outside part of the gut enterocytes. Thirdly, gut bacteria can produce bacteriocins and change 

the pH to create a harsher environment for other invading bacteria to settle in the gut. 

Fourthly, gut microflora can influence the immune system through its effect on gut enterocytes 

(quorum sensing) and the innate and adaptive immune system [36, 37]. To understand better 

the autoimmune-associated disturbances in the gut microflora, there is a definite need to 

understand the mechanism by which gut microflora interacts with the epithelial mucosa lining 

up the intestinal tract. Over the last decade, there have been growing interests in studying the 

mechanism by which enterocytes interact with gut microflora.  

The epithelial mucosa is inhabited by significant number of various immune cells that work 

as a link between the gut epithelia and lumen-contents [38]. One of these immune cells is 

lymphocytes such as T helper cells. These cells play an important role in the adaptive 

immune response. Thus, T helper cells have a more administrative role where it comes to 

neutralizing infected cells. Accordingly, they do not have direct cytotoxic or phagocytic 

effect. This role covers activating and directing other immune cells to destroy xenobiotics. 

They are essential in B cell antibody class switching, in the activation and growth of 

cytotoxic T cells, and in maximizing the antibacterial activity of phagocytes such as 

macrophages [39-41]. After a period of time, T helper cells start expressing CD4 which is a 

specialized surface protein. So when a body-cell is infected with an antigen, and this cell 

expresses this antigen on MHC class 2, a CD4 cell will promote the cell interactions and 

elimination. The lamina propria is a layer of connective tissue that lies adjacent to the 

epithelium of a mucous membrane. The intestinal epithelial mucosa consists of the lamina 

propria and the mucus. Many T helper cells, macrophages and IgA-producing plasma cells 

are present in the lamina propria [4].  

Specialized microfold (M) cells of the lymph tissues can be found in the epithelial mucosa in 

the gut. M cells play a crucial role in the genesis of systemic immune response by delivering 

antigenic substrate to the underlying lymphoid tissue where immune responses start. 

Although it has been shown that dendritic cells also have the ability to sample antigens 

directly from the gut lumen, M cells certainly remain the most important antigen-sampling 

cell and are affected in the autoimmune diseases. M cells transport bacteria and antigen to 

the lymphatic tissue. Dendritic cells are bone marrow-derived antigen-presenting cells that 

essentially influence all aspects of innate and acquired immunity (Figure 2). These cells 

sense the microbes in their milieu through TLRs, and by signalling via different TLRs, 

generate biological reactions which produce variable responses from excitatory to 

suppressive. Dendritic cells are heterogeneous inhabitants of the intestine found scattered in 

all lymphoid compartments and can enter between epithelial cells to taster lumenal bacteria 

which they can then present to immune cells in the mucosa.  

In healthy individuals, cytokines and mature T cells suppress ‘exaggerated’ T cell response 

that may result in unwanted cell damage, apoptosis and death. Thus, gut microflora in each 

individual, works as a finger print and exerts a significant control over the immune 

response to various ‘antigenic’ stimuli. In addition to the gut microfloral control on the 
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intestinal immunoregulatory system and the mucosal barrier, it is also involved in the 

pathogenesis of symptoms related to metabolic interactions of the microflora with intestinal 

contents or intestinal functions such as peristaltic movement [25, 26, 42-44]. As a result, 

many gastrointestinal disorders can be benefited from probiotic treatments. This includes 

travel diarrhoea, bloating and irritable bowel disease. Changes in the permeation of the 

intestine have been strongly associated with various autoimmune diseases such as T1D and 

IBD. However, the efficacy of probiotic treatment in autoimmune diseases is still under 

scrutiny and despite excellent progress in studying changes in gut microfloral composition 

associated with many autoimmune diseases, probiotic therapy has still not shown clear 

clinical efficacy in treating such conditions. The reported changes of intestinal permeation 

seem to indicate weakness of enterocytic tight junctions as well as the integrity of the 

epithelial mucosa as a whole. During the autoimmune process, inflammation becomes sound 

resulting in increased mucosal permeability (Figure 1). This may result in antigens reaching 

the lamina propria (from the lumen) triggering an autoimmune response. This starts through 

activation of the T cells and proinflammatory cytokines release. This results in further increase 

to the mucosal permeability and exacerbates the immune response [45-48].  

 

Figure 1. Intestinal permeability during an autoimmune response 
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3. Animal models suitable for investigating probiotic applications in 

autoimmune diseases 

During the process of drug development, various in vivo, ex vivo, in situ and in silico methods 

can be used. Each method has advantages and disadvantages, and so using more than one 

method can provide better confirmation of findings. In silico methods can provide an initial 

insight into a potential drug candidate with predicted high pharmacological activity and 

good stability, while ex vivo methods can provide more information about a drug’s 

interaction with living tissue, and are more cost-effective compared with in vivo animal 

models [49]. In situ methods can better predict drug absorption compared with ex vivo 

models but in vivo models can provide more comprehensive pharmacokinetic profiles and 

give a better understanding of drug-tissue interactions [50]. In vivo studies are usually 

carried out where drug therapeutic formulations are administered to animals in order to 

investigate short and long term safety, to explore various clinical effects and to study 

different physicochemical parameters before confirming suitability of the formulation to a 

disease condition(s). Various animal models are used to represent various diseases [51].  

In vivo studies on specialized animal models have allowed a great progress in tailoring 

research questions towards individualized gene contributions and their effect on the 

pathogenesis of these diseases. This has been done using standard inflammatory disease 

models in transgenic animals and by identifying novel models through the induction of the 

disease using chemicals. Although there is a surplus of animal models (spontaneous and 

induced) to study various autoimmune diseases, there is no ideal or standard model for 

studying the effect of probiotics on each condition [52-55]. Rats, mice and hamsters have 

been used to study probiotics applications in Ads. However, future research is needed, to 

compare the effect of probiotics on various animal models of ADs.  

An ideal animal model should represent a specific medical condition in terms of disease 

development, pathophysiology, biological disturbances and short & long term 

complications [56-58].  

If we are to create a better model of human AD, we should carefully consider the disease 

effect on the following:  

 Relevant end points including primary, secondary and tertiary. 

 The relevant speed and stages of disease development and progression. 

 Disease complications, their progression and the relevant clinical end point(s). 

 Symptomatic/nonsymptomatic signs of the disease. 

 Feasibility of sample collections in terms of tissue site and sample volume. 

 The incidence in males vs. females.  

The current therapeutics for ADs are inadequate, which necessitates further drug 

development and in vivo trials. Clinical translation of AD’s pathophysiology and clinical 

manifestations, from animal to human, has been limited and rather difficult. This is because 

very little is known about the pathophysiology and prognosis of such conditions; the extent 

of heterogeneity, polymorphism, genetic distance, the exact site of initial immune response 
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(gut, lymph nodes, blood, brain or?), and ‘potential’ triggering antigens. To complicate this 

further, different Ads have different signs and symptoms and thus, one animal model is 

unlikely to be always suitable for all conditions. Creating a suitable animal model for ADs 

requires the ability to accurately translate the findings to human. These findings include 

therapeutic efficacy (prevention/treatment), safety and PK/PD profiles. With regards to 

different ADs, various animal models have been proposed. In fact, many ADs have more 

than one animal model representing the disease. For example, T1D has many animal 

models. The nonobese diabetic (NOD) mouse is considered the ‘standard’ animal model of 

the disease. Other models are induction models of rats, mice and hamsters using alloxan or 

streptozotocin to destroy pancreatic beta cells and induce T1D. The NOD mouse represents 

the best spontaneous model for a human autoimmune disease, in particular, T1D. NOD 

mouse model allows the investigation of various immunointerventions that can be used in 

human T1D. Similar to T1D in human, NOD mice have higher levels of macrophages, 

dendritic cells, CD4+ and B cells. The induction of T1D in NOD mouse can be achieved 

through environmental conditions, mimicking the development of T1D in human. However, 

the development of T1D in NOD mouse takes place quickly and can produce a significant 

inflammatory condition that may over-respond to immunomanipulation and exaggerate the 

effect of a treatment. Also, the incidence of T1D is different between males and females in 

this model while the incidence is the same in males and females in human. This can further 

limit the applications and the findings of this animal model [59]. Many therapeutics that 

showed good efficacy in this model failed to achieve similar results in T1D human subjects 

[60]. Having said that and regardless of how different this model is, from the 'true' human 

TID, NOD mouse remains the most representative of human T1D. Interestingly, in a 

recently published study, the incidence of T1D was much higher, when the mice were 

maintained in a germ-free environment suggesting direct connection between gut 

microflora and the development of T1D [61, 62]. 

Overall, a suitable animal model for human AD should ideally be easy to breed and handle, 

and can accommodate various medical conditions that may come about or be associated 

with the condition it is representing. Thus, extrapolation of its findings to human should be 

easily done, and with great accuracy and precision. 

4. The influence of gut microflora on the development of autoimmune 

diseases  

In many autoimmune diseases, the gut microfloral composition is different than that of 

healthy individuals. However, the cause of this change of composition and whether this 

change is a contributing factor to the development of the disease remain unclear. Probiotic 

treatment has demonstrated potential benefits in many Ads, assumingly, through 

normalizing such changes in the gut microfloral composition. Interestingly, the literature 

suggests that the effect of probiotic treatment on ADs’ development and progression may be 

brought about through the effect on the expression and functionality of certain protein 

transporters. Recent publications suggest that many transporters have their expression and 

functionality altered in the autoimmune disease; T1D [23, 27, 72]. The exact mechanism 
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associating the change in transporters and diabetes’ development is still unknown but there 

are few assumptions to explain such an interaction. The first assumption is that some ADs, 

start with a direct insult in the gut, initiating a disturbance in the gut microflora and a 

consequent disturbed bile flow. This results in an altered bile feedback mechanisms and a 

change in the expression of protein transporters responsible for bile enterohepatic 

recirculation. The second assumption is that disturbance in protein transporters expression 

and functionality, caused by a genetic mutation, produces a disturbance in enterocytic-

microfloral interactions triggering an inflammatory response. This response is further 

exacerbated by the resulted increase in gut permeability and ileal lymph/tissue necrosis. The 

third assumption is that the functionality of the immune system is altered (due to either an 

insult in the gut or genetic mutation). This alters the composition of gut microflora resulting 

in initiating of inflammation reaching various body tissues causing systemic inflammatory 

response triggering an autoimmune disorder and eventuating in autoimmune systematic 

response. In all these assumptions, genetic susceptibility is expected, and contributes further 

to the disease development and progression. The above assumptions were based on the 

work of the authors as well as careful evaluation of the literature.  

In recent publications, alterations in the functionality of some transporters have been linked 

directly to the development of some autoimmune diseases such as diabetes. In addition, the 

enterohepatic recirculation of bile acids has also been related, by association, since 

secondary bile acids are solely produced by the action of gut microflora [13]. Bile salts’ 

output in diabetic animals was high compared with healthy, and the expression of Mdr2 

was also high after STZ treatment [63]. In another study, a mutation in Zinc transporter 8 

(ZT8) located in beta cells, is implicated in the dysregulation of insulin transport and release, 

and an exacerbation of the inflammatory response leading to T1D. In this study, ZT8 was 

considered as an autoantigen resulting in the stimulation and production of beta cells 

autoantibodies and T1D development [64]. Moreover, streptozotocin (STZ) had different but 

significant effect on the expression of Na/Cl/glucose cotransporters, and the administration 

of insulin reduced such an effect [65]. Hyperglyemia itself directly reduced the activity of 

Mdr1 suggesting a clear association between pre-T1D hyperglycemia and disturbances in 

protein transporters [66]. In another recent study, the effect of STZ on cation protein 

transporters was reported, interestingly, at different levels of protein synthesis; 

transcriptional and posttranscriptional depending on the type of the transporters affected 

[67]. However, some studies suggest a diabetic influence is stronger on enzymatic activities 

than on protein transporters with the enzymatic influence being the cause of exacerbation of 

inflammation and development of the disease [68]. The impairment of protein transporters 

functionality, reported in the diabetic animals can take place either by reduced protein 

expression or reduced action. When glucose protein transporters in the blood brain barrier 

were studied under chronic hyperglycemia, their concentrations remain constant but 

functionality and glucose intake were impaired [69]. However, under acute hyperglycemia 

induced by STZ, their concentration decreased suggesting different response at different 

stages of the disease [70-72]. Accordingly, protein transporters have shown strong 

association with diabetes development and progression as well as diabetic complications.  
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Although there is some evidence suggesting that unrelated infections can result in the 

induction of organ specific autoimmunity [73], there is abundant epidemiological, clinical, 

and experimental evidence linking similar and closely related infectious agents with 

autoimmune diseases. Accordingly, the most acceptable hypothesis explaining how 

infectious agents cause autoimmunity is “molecular mimicry”. Molecular mimicry directly 

invokes the specificity of the immune response to the resultant breakdown of tolerance. It 

proposes that microbial peptides have structural similarities to self-peptides and are 

therefore involved in the activation of autoreactive immune cells [74, 75]. Peptides, 

primarily, heat shock proteins (HSPs), have been implicated in autoimmunity [76, 77]. 

HSPs are a highly conserved family of proteins with significant structural homology 

between humans and bacteria. HSPs are located on almost all subcellular and cellular 

membranes and their numbers are induced in response to high temperatures and stress. 

HSPs function as molecular chaperons which are instrumental for signalling and protein 

trafficking. HSPs induced synthesis is implicated in autoimmunity. HSPs are believed to act 

through the activation of Toll-like receptors (TLRs) which trigger the expression of several 

genes that are involved in immune responses. 

TLRs are only present in vertebrates and at least 11 TLRs are currently known. Distinct TLRs 

are differentially distributed within cells:  TLR1, TLR2, TLR4, TLR5, TLR6, TLR10 and 

TLR11 are transmembrane proteins expressed on cell surfaces that contain extracellular 

domains rich in leucine that interact with pathogenic peptides, whereas TLR3, TLR7, TLR8 

and TLR9 are primarily distributed on the membranes of intracellular compartments such as 

endosomes [78, 79]. Accordingly, TLRs are another potential target to bacterial 

manipulation. They are proteins on intestinal membranes that bind to pathogen-associated 

molecular patterns (PAMPs). After binding they release nuclear factor-kappa B (NF-kB) 

which moves into the cell nucleus and stimulates the release of pro-inflammatory mediators 

to target pathogens [80, 81]. Gut microfloral bacteria can directly trigger TLRs through 

adhering to the epithelial mucosa. As the human gut contains such large volumes of 

beneficial bacteria, they constantly trigger the TLRs. This leads to an eventual attenuation in 

the TLR response [82-84], (see Figure 2). 

Although both pathogenic and probiotic bacteria regulate immunity via activation of TLRs, 

they do not usually trigger the same pathogenic inflammatory responses. Different probiotic 

bacteria stimulate distinct TLRs on host cells. Therefore, it is of biological and clinical 

importance to understand how very similar molecular proteins (HSPs) released by both 

commensal and pathogenic bacteria can trigger different responses by stimulating the same 

cellular receptors. One of the reasons for this may be that although the proteins are very 

similar they are not identical and thus they may stimulate the receptors in different ways to 

either produce a pro-inflammatory or an anti-inflammatory response. Another possibility is 

that the slight differences in the peptides allow them to bind to different TLRs leading to 

dissimilar responses. A third reason might be that more than one TLR is involved and that 

the effects seen are a synergistic effect depending on which TLRs are involved. TLR2 

recognizes a variety of microbial components which include lipopeptides and peptidoglycan 

as well as lipopolysaccharides (LPS) from non-enterobacteria. TLR4 is an essential receptor 
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for (LPS) recognition [85-87] and it has been shown to be involved in the recognition of 

endogenous heat shock proteins, eg HSP60 and HSP70. Microbial recognition by TLRs 

facilitates dimerization of these receptors. TLR2 appears to form a heterophilic dimer with 

TLR1 or TLR6 but other TLRs are believed to form homodimers. TLR1 and TLR6 that are 

functionally associated with TLR2 allow for the discrimination between diacyl and triacyl 

lipopeptides. Dimerisation of TLRs triggers activation of signalling pathways through the 

cell and into the nucleus. However, different gene expression profiles are triggered 

depending on which TLRs and TLR combinations are activated.  

 

Figure 2. Molecular mimicry as a proposed cause of autoimmune diseases through the induction of 

‘mistaken-identity’ immune response. 

Loss of tolerance of the immune system to the body’s own tissues can be caused by a 

number of factors including infection, excessive dendritic cell stimulation by intestinal 

microbiota, inadequate regulatory T-cell function or genetic factors. Dendritic cells are 

believed to be critical to the balance between tolerance and active immunity. Intestinal 

Dendritic cells are excessively activated in IBD as well as other autoimmune diseases which 

indirectly links the gut microfloral disturbances with the initiation or the progression of the 

disease (see Figure 2). Thus, the influence of disturbances in normal gut microflora may be 

indirectly linked to the initiation, development, progression and prognosis of many of the 

autoimmune disease. Such disturbances have been linked to changes in the expression and 

functionality of protein transporters in and outside the gastrointestinal tract. These 

disturbances have also been linked to changes in the composition and functionality of bile 
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acids and many physiological and biochemical feedback mechanisms that showed clear 

impact on the stability, performance and efficiency of the immune system and its associated 

lymph tissues. However, many studies may show a significant impact or the lack of it, when 

trying to rectify these disturbances through the treatment with probiotics, making the 

influence of gut microflora on the development and progress of autoimmune disease 

difficult to clearly explain. Consequently, a direct influence of normal microfloral 

composition on the body’s inflammatory response has been demonstrated in the literature. 

This directs further research towards investigating how the gut microflora can potentially 

control the immune system to the extent where its manipulation may delay or even prevent 

the initiation of the inflammatory response leading to the clinical signs and symptoms of the 

immune disease.  

5. The effect of probiotics on autoimmune-associated inflammation 

Bacterial gut-microflora live in an ecosystem, where each bacterial colony is part of a 

bacterial strain that colonizes the gut, and interacts with each other, as well as, with other 

gut-bacterial strains. The nature of this interaction is being currently studied at many 

scientific labs worldwide, and evidence of cross-talking continues to emerge. Bacterial cross-

talking process involves polypeptide-based signals being secreted by various bacteria that 

influence the protein expression and functionality in other bacteria [25, 88]. This means that 

bacteria can influence the expressions and functionality of various proteins and membrane-

transporters of other bacteria, via changing the gut concentrations of certain polypeptides. 

This can be brought about through the induction or suppression of membrane-transporters 

or through the process of direct-signalling [38]. In matter of fact, sequencing of human faecal 

samples has identified over 5000 different active gut-bacteria, with known metabolic 

activities [24]. This exceeds the average number of mammalian cells present in the body! 

Infants in the womb are mainly germ-free with the exception of some microbes that may be 

acquired through the swallowing of the amniotic fluid. The type and variance of these 

microbes and the role each gut-bacterial strain plays in initial gut-ecosystem development is 

still not completely understood. The next exposure to microflora takes place during birth when 

infants inherit a bacterial profile from their mother that shapes the composition of the matured 

gut. This profile of bacteria differs with type of delivery (vaginal or caesarean), time taken for 

the membrane of the amniotic sac to rupture, gestational age and use of antibiotics during 

labour. The human gut undergoes continuous maturation over many years, and has a shifting 

microbe population that varies between individuals and their exposure to family members, 

especially siblings, the sanitation of living conditions, and food and drink. The balance of 

different bacteria stabilises as people age but is still affected by factors including diet, location, 

antibiotic use and radiation exposure in adults. Gut composition seems to become more 

unstable again as people age, as the faecal microbial profiles of those 65 years and older show 

considerably more variability between individuals [89]. 

Compromised gut movement associated with autoimmune disease can result in substantial 

bacterial and yeast overgrowth which is postulated to disturb bile acids composition and 

exacerbate the disease-associated inflammation [105-107]. Autoimmune disease such as 
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diabetes, show substantial inflammatory response, and bile acids disturbances can cause 

chemical unbalance that has been linked to poor tissue sensitivity to insulin [108], rise in the 

levels of reactive radicals in the blood [109], poor enterohepatic recirculation and 

dysfunctional protein-transporters in the gut that is negatively affecting liver detoxification 

and performance [110]. Accordingly, future AD-therapy should not only focus on rectifying 

physiological imbalance but also in targeting the disturbances in bile acids composition, 

protein transporters and overall the inflammation cascade initiated in the gut. This can be 

achieved through normalizing the composition of gut microflora and bile acids, gut immune-

response and microflora-epithelial interactions towards maintaining normal biochemical 

reactions and healthy body physiology. Physiological features of human development 

including the innate and adaptive immunity, immune tolerance, bioavailability of nutrients, 

and intestinal barrier functions, are directly related to the composition and functionality of the 

human microflora. This includes the percentages of what is currently known as good and bad 

gut microflora. Good microflora includes two main species, Lactobacillus and Bifidobacteria. 

Microflora modifications may take place due to antibiotics consumption, prebiotic and 

probiotics administration and the use of drugs which affect gastric motility resulting in 

changes in gastric pH and gut-emptying rate. These modifications have been shown to be 

significantly profound in diabetic subjects resulting in the reduction of the percentage of good 

bacteria, the increase of the percentage of bad bacteria and yeasts and the consequent increase 

in the percentage of toxic bile salts such as lithocholic acid. This can also contribute to the 

higher incidence of gall stones and liver necrosis reported in diabetic patients. Accordingly, 

probiotics can introduce missing microbial components with known beneficial functions for 

the human host, while prebiotics can enhance the proliferation of beneficial microbes or 

probiotics, resulting in sustainable changes in the human microflora. Symbiotic relationship 

between probiotics and prebiotic administration is expected to exert a synergistic effect and in 

the right dose, may normalize and even reverse dysbiosis-associated complications.   

Continuous exposure to bacteria can induce mucin secretion and change the structure of the 

mucous layer which can play a role in maintaining mucus thickness and its protective 

effects. In a recent in vivo study, Wistar rats were administered a probiotic formulation 

(VSL#3) daily for seven days. After probiotic treatment, basal luminal mucin content 

increased by 60% which has been linked to better protective effect and substantial 

stimulation of mucin secretion at the level of DNA-gene expression [90-93].  

The significance and magnitude of the effect of host genetics on gut microfloral composition 

and functionality is difficult to accurately determine [94, 95]. It is generally agreed on that 

initial colonisation has the greatest effect on the lifelong bacterial types and functionality. 

Accordingly, it is expected that family members with shared genetic factors are likely to 

share the same initial colonisation similarities between their bacterial types. However, when 

the similarity of bacterial populations was compared between identical twins, non-identical 

twins and siblings, it was found that identical twins had significantly closer microflora 

compositions while others did not [96]. Other studies have observed bacteria modification 

after changes in host allele types, which also indicates some genetic effects but evidence 

remains controversial. Thus, it is clear that genetics do influence bacterial types in the gut, as 
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does diet, environment and a multitude of other factors. Accurate definition to the 

contribution of each factor to the types and functionality of gut microflora remains to be 

studied. Microfloral bacteria in the gut play a number of beneficial roles [97]. They ferment 

and break down otherwise indigestible food components, thus, making additional nutrients 

available to the human host. The presence of gut bacteria is protective against pathogens; 

the multitude of bacteria reduce the amount of available nutrients for invading pathogens, 

adhesion of pathogens to epithelial walls is restricted and commensal bacteria may produce 

bacteriocins that have an inhibitory effect of pathogenic bacterial growth. 

Gut microflora is reported to influence the formation of cells essential to the immune 

system. Gut-associated lymphoid tissues are collections of immune cells in lymphoid tissue 

in the gastrointestinal tract [98]. They play an essential role in the localised immune defence 

of the gut. While small accumulations of lymphoid tissue occur throughout the 

gastrointestinal tract, the majority is found in Peyer’s patches, mesenteric lymph nodes and 

dendritic cells [99] (see Figure 3). 

 

Figure 3. The influence of gut microflora on the activation of intestinal epithelial immune cells. 

Peyer’s patches store the inflammatory mediators, of a localised immune response including 

naive T-cells. Dendritic cells function as messengers which present endocytosed antigens to 

the Peyer’s patches or mesenteric lymph nodes to prime T-cells into effector cells [100]. If the 

antigens are presented to the mesenteric lymph nodes, the effector cells are released into 

systemic circulation via the efferent lymphatic system, leading to an inflammatory response 

from central lymph nodes. Through effects on the dendritic cell intermediary, bacteria can 

modulate T-cell regulators which can lead to alter systemic inflammation via lymphatic 
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systems. Gut growth in animal studies where mice are raised in a microbe free environment 

shows a different intestinal structure compared to normal gut growth and the amount of gut-

associated lymphoid tissue is reduced [101, 102]. This results in reduced gut microfloral 

differentiation between beneficial and pathogenic bacteria, bringing about a significant 

reduction in the area of the gut which can launch an innate immune response and decreases 

the communication of antigen information to central lymph nodes. This makes the entire body 

more vulnerable to harmful bacteria passing through the gut epithelium unnoticed [103-105]. 

In mice, a disturbed TLR-pathway results in compromised TLR signalling which results in 

any intestinal injury being met with an exaggerated response [81, 106-108]. A down-

regulated TLR pathway caused by dysbiosis could cause a similar inflammatory process, 

making commensal bacteria potentially protective against IBD [109, 110]. This indicates the 

necessity of the TLR conditioning to develop an immune tolerance to bacterial threats in the 

gut. Bacteria in the gut can also bind to PAMPs to deliberately initiate an inflammatory 

response to signal the presence of invading pathogens.  

Overall, these changes to inflammatory signalling and response based on interactions with 

gut microfloral bacteria are numerous and varied in mechanism. This indicates a complex 

relationship between the innate immune system and gut microflora where both parties are 

adaptive to the other, rather than static in response. 

Many autoimmune and inflammatory diseases have shown positive response to probiotic 

and prebiotic treatments. The composition of the intestinal microflora may even affect 

mammalian physiology outside the gastrointestinal tract [111]. Recent studies have shown 

significant changes in gut microfloral and bile acid compositions in T1D [28, 43]. Thus, it is 

clear that our symbiotic microflora award many metabolic capabilities that our mammalian 

genomes lack [112], and so therapeutics that target microfloral modulation may prove 

rewarding. When the new born baby leaves the germ free uterus, she/he enters a highly 

contaminated extra-uterus environment. This requires the activation of her/his immune 

system to prevent infection. Over the period of the first year, the new born’s intestinal 

microflora develops and its composition becomes her/his gut microfloral fingerprint! Gut 

microflora has been shown to play a major rule in controlling the inflammatory response of 

the host immune system through direct and indirect bacteria-bacteria and bacteria-host 

interactions. These interactions include physical and metabolic functions of the gut 

microfloral bacteria, which protect the intestinal tract from foreign pathogenic bacteria, 

eliminate the presence of unwanted bacteria through producing bacteriocins and other 

chemicals, and inform the gut epithelium and the host immune system about whether a 

local inflammatory response is needed [37, 113]. Gut microflora can control the host immune 

system through four main actions. The induction of IgA secretion to protect against 

infection, triggers localized inflammatory responses, neutralizing T-helper (Th) cell response 

and also contributing to the induction or inhibition of generalized mucosal immune 

responses. Recent studies have shown that in autoimmune diseases and gut inflammation 

disorders, there is a significant disturbances in the ratios of Th cells such as the increase in 

the Th-2/Th-1 ratio associated with inflammatory bowel diseases, which has been linked to 

exacerbation of the gut inflammation and the development of the disease. In recent studies, 

gut-associated dendritic cells in the lamina propria can extend their appendices reaching the 
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gut mucosa and using their Toll-like receptors (TLR) 2 and 4, to sample bacterial metabolites 

[114, 115]. This may result in dendritic cells releasing certain cytokines that stimulate the 

activation of naive Th-0 into active Th- cells such as 1, 2 and 3/1 [115]. Interestingly, some 

microfloral bacteria can actually cross enterocytic microfolds and interact with antigen 

presenting immune cells in mesenteric lymph nodes to activate naive plasma cells into IgA-

producing B cells [116]. IgA coats the intestinal mucosa and control further bacterial 

penetration thus protecting the host from potential pathogenic bacteria. Even more 

interestingly, gut microflora bacteria have shown ability to not only initiate an inflammatory 

response but also to control and inhibit such a response. Some microfloral bacteria or their 

metabolites can interact with the intracellular receptor TLR-9, to which the bacteria activates 

T cells through the production of potent anti-inflammatory cytokines such as IL-10 [117, 

118]. Microfloral bacteria can also produce small molecules that can enter intestinal 

epithelial cells to inhibit activation of nuclear factor kappa-light-chain-enhancer of activated 

B cells (NFkB) [119]. Moreover, prolonged exposure to bacterial endotoxins, in particular, 

LPS (which interacts with TLR 2 and 4) can activate intracellular anti-inflammatory 

associated proteins that result in an overall anti-inflammatory effect [120]. Such gut 

bacterial-host interactions are critical in maintaining a balanced and effective immune 

response to various infections while maintaining control over prolonged or chronic 

inflammation and reducing the overstimulation of the host immune system.  

Recent evidence suggests that a particular gut microfloral community may favour 

occurrence of the metabolic diseases. It is well know that the composition of gut microflora 

changes with diet and also as we age [121, 122]. In one study, a high fat diet was associated 

with higher endotoxaemia and a lowering of bifidobacterium species in mice cecum [123-

125]. In a follow up study, the administration of prebiotics, in particular, oligofructose, to 

mice given high fat diet, restored the reduced quantity of bifidobacterium. This also resulted 

in reducing metabolic endotoxaemia, the inflammatory tone and slowing the development 

of diabetes. In this study and compared with control mice on chow diet, high fat diet 

significantly reduced intestinal Gram negative and Gram positive gut bacteria, increased 

endotoxaemia and diabetes-associated inflammation. However, when diabetic mice on high 

fat diet were given oligofructose, metabolic normalization took place including the quantity 

of gut bifidobacteria. In these mice, multiple correlation analyses showed that endotoxaemia 

negatively correlated with bifidobacteria quantity [126, 127]. By the same token, 

bifidobacterium quantity significantly and positively correlated with improved glucose 

tolerance, glucose-induced insulin secretion and normalised inflammatory tone (decreased 

endotoxaemia and plasma and adipose tissue proinflammatory cytokines) [123-125]. In 

general, the level of microfloral diversity and gut bifidobacteria in human, relate to health 

status and both decrease with age [128, 129]. 

6. The potential applications of probiotics in autoimmune diseases 

Probiotics have been shown to be beneficial in wide range of conditions including infections, 

allergies, and metabolic disorders such as diabetes mellitus, ulcerative colitis and Crohn’s 

disease [130-132].  
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When discussing therapeutic applications in AD, the use of probiotics is an area of growing 

interest, not just as an adjunct therapy but also as a mainstream treatment aiming at 

normalizing the disturbed gut-microfloral composition, as well as, directly relieving signs 

and symptoms of the disease. In order to design a probiotic formulation that targets disease-

associated disturbances in gut microflora, a better and more detailed understanding of these 

disturbances is necessary. Better understanding of microfloral composition in the gut can be 

achieved through cell-culturing and protein-based assays that analyse the nature, type and 

quantity of various bacteria that exist in the gut.  

However, beneficial effects of probiotics in ADs are modest, bacterial-strain and disease-state 

specific and limited to certain manifestations of disease and duration of use of the probiotic. 

6.1. Type 1 diabetes and probiotics 

Probiotic administration in animal models of Type 1 diabetes has shown great potentials. 

Combinations of different bacterial strains can be used [133] but a mixture of Lactobacilli and 

Bifidobacteria is a common choice [20-23, 26, 42, 92, 134-136] 

There are reports in the literature that probiotic treatment can be useful in diabetes [28] but 

there is little explanation of the mechanisms involved. The initial site of diabetogenic cells 

has been hypothesized to be in the gut whereas pancreatic lymph nodes serve as the site of 

amplification of the autoimmune response [137]. This autoimmune response may disturb 

the composition of the normal gut flora. Treatment with Bifidobacteria and Lactobacilli has 

been shown to normalize the composition of the gut flora in children with T1D [131, 138]. In 

addition, the administration of Lactobacilli to alloxan-induced diabetic mice prolonged their 

survival [139, 140] and administration to non-obese diabetic (NOD, a rodent model of T1D) 

mice inhibited diabetes development possibly by the regulation of the host immune 

response and reduction of nitric oxide production [140]. Furthermore, the administration of 

a mixture of Bifidobacteria, Lactobacilli and Streptococci to NOD mice was protective against 

T1D development postulated to be through induction of interleukins IL4 and IL10 [141].  

Slowing of peristalsis (gastroparesis) has been reported in T1D patients. This can result in a 

bigger population of bacteria in the gut and a subsequent rise in the concentration of 

secondary bile acids [142, 143] such as lithocholic acid [144, 145]. In addition, the disturbed 

bile acid composition in T1D (8) is strongly linked with autoimmune and liver diseases. The 

administration of Lactobacilli and Bifidobacteria may restore the bile acid composition [146, 

147]. It is important to select the right probiotic species based on efficacy, stability in the gut 

(bile and pH tolerability) and long term safety. For example, some probiotic-bacterial cells 

have been examined for stability as well as efficacy in various autoimmune diseases. 

Lactobacillus rhamnosus, Lactobacillus acidophilus and Bifidobacterium lactis show good bile and 

pH tolerability under normal conditions of pH (1.5-8) and bile acid concentration (0.8 – 3 %), 

in addition to long term safety [148-150].  

6.2. Inflammatory bowel diseases and probiotics 

In IBD such as UC colitis, there is a substantial inflammatory component with atypical type 

2 T-helper cell (Th2) activation. Th2 are activated by the presence of antigens and then direct 
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other immune cells in the body. In UC they can become overly sensitised and secrete 

interleukin-13, an inflammatory mediator [151]. This drives T-cells not normally present in 

the colon to migrate there and makes the colon mucosa more sensitive to commensal 

bacteria which drives further inflammatory responses [152]. 

Naïve CD4 T cells differentiate into Th1 or Th2 effector T cells on activation by antigen-

presenting cells (see Figure 4). Th1 and Th2 cells carry out distinct antigen specific adaptive 

immune functions; Th1 cells mediate cellular immunity against intracellular pathogens, 

whereas Th2 cells enable humoral immunity and immunity against extracellular pathogens. 

The effector functions of Th1 cells are exerted in part by production of interferon (IFN)-γ 

and those of Th2 cells by interleukins including IL4. Inappropriate regulation of Th1 and 

Th2 cell functions can cause autoimmune diseases. 

In IBD, UC in particular, as with other inflammatory conditions, the production of 

immunoglobulins is elevated. Immunoglobulins, or antigens, bind to antibodies to 

encourage an immune response to the antigen while limiting the harm the antigen can do. 

UC displays an increased production of IgA, IgM, IgF but also has a disproportionately high 

level of IgG1. IgG1 binds to a colonic epithelial antigen in an autoimmune response. That 

antigen is also present in the eyes, skin and joints and inflammatory responses there can 

cause the extraintestinal symptoms associated with UC, including peripheral arthritis, 

erythema nodosum, iritis, uveitis and thromboembolism [153]. 

The identification of a causative UC pathogen would greatly simplify diagnosis and new 

treatment identification. Three broad studies used sequenced bacteria from the human gut 

to try and identify a healthy gut microbial profile. When the bacteria strains were divided 

by phylogenetic type it was found that 98% of bacteria were part of four phyla [154-156]. 

Another study compared this control data to samples from patients with Crohn’s disease 

and UC. Two-thirds and three-quarters of the diseased samples, respectively, had the same 

bacterial balance as healthy controls. In the other IBD samples there was no consistency in 

the atypical bacterial groups, indicating that although dysbiosis is present there are no 

single causative bacteria [154]. Unfortunately, it is still unknown whether the dysbiosis 

precipitates gut inflammation or if another cause initiates the disease and dysbiosis occurs 

due to the inflammatory changes [157] 

It has been shown that patients with UC display an increased microflora density [151] 

meaning the total population of bacteria in the colon is increased. In one study the number 

of bacteria in colon biopsies taken during endoscopy from newly diagnosed and untreated 

UC patients was double that of healthy controls [158]. The samples from UC patients also 

showed a thinner and less sulphated mucosal layer of the gut epithelium [159] which could 

support the increased bacterial levels through a lessened mucus flow to dislodge bacteria or 

an improved nutritional role from less sulphate. 

VSL#3 is a high dose probiotic mixture that shows how information from multiple trials and 

in vitro studies can be brought together. Considering how new data fits into the probiotic 

profile established from previous investigations can help highlight any challenges to 

existing assumptions. Alternatively, when study results are replicated by different research 
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centres the significance of the findings is increased. This reflective process should develop 

an understanding of the probiotic that is based on clinical evidence. VSL#3 contains a 

combination of three strains of bifidobacterium, four strains of lactobacilli and one strain of 

streptococcus salivarius. A trial in 1999, shortly after the probiotic was developed, tested 

faecal samples of 20 UC patients to determine changes in bacterial concentrations when 

VSL#3 was administered with no other treatment. An increase in the bacterial numbers of 

strains found in the probiotic was observed in all patients from the 20th day of treatment 

and remained stable. This established that the probiotic could colonise the gut and 

encouraged further clinical trials [160]. VSL#3 was then trialled repeatedly in small studies 

which had similar conclusions regarding safety and efficacy. The studies showed a low 

number of reported side effects which were consistently mild, so safety in the trialled 

patient types was assumed. The outcomes from the trials were encouraging as the probiotic 

treated groups usually showed an improvement in disease state [92, 161-166]. This identified 

VSL#3 as a feasible new UC treatment but a large, randomised, placebo controlled study 

was needed to verify results [167]. Two studies have provided the additional clinical 

evidence needed to substantiate the conclusions from earlier trials. The first was conducted 

on patients in India in 2009 over a 12 week treatment regime. The second trial, in 2010, had a 

shorter treatment time of 8 weeks and was carried out in Italy. Both trials were multicentre, 

randomised and placebo controlled and were conducted on 144 patients. Information on the 

safety of VSL#3 was definitely supported by both trials. The only side effects reported by the 

probiotic treatment group were mild, primarily abdominal bloating and discomfort. 

Additionally, there were no patient withdrawals from the VSL#3 group due to worsening of 

symptoms [167-169]. As both trials were on patients with mild to moderate UC as 

determined by the Ulcerative Colitis Disease Activity Index (UCDAI) score, safety in this 

demographic can be seen to have been established. The safety of VSL#3 in more severe 

disease stages were not assessed by these trials and remains unknown. The primary 

outcome from both trials was a 50% reduction in the patient UCDAI score. When the results 

of the group receiving probiotics were compared to the group not receiving probiotics it was 

shown that a significantly greater the percentage of VSL#3 treated patients achieved the 

outcome compared to the placebo. This was consistent between the two trials. One of the 

secondary outcomes was the achievement of disease remission, which was the reduction in 

UCDAI to 2 or less. It is interesting that this was only a secondary outcome as remission is 

often considered the main goal of treatment of UC by patients. Both trials achieved remission 

in approximately 50% of patients on VSL#3. This was statistically significant in the 2009 Indian 

trial as the placebo remission rate was only 15% [168]. The second trial, based in Italy, had an 

unusually high placebo remission rate of 40% which meant that 50% remission in the VSL#3 

was not significant [169]. This placebo rate weakens the evidence for VSL#3 inducing disease 

remission when adjunctive treatments are unchanged. However, these results do support the 

role of VSL#3 as an effective UC treatment to reduce symptom severity.  

Despite promising treatment outcomes with VSL#3, exact mechanisms of action and the 

extent and significance of synergism remain to be clearly identified. The mechanism of 

action has been investigated a number of times and these studies suggest alteration of 

intestinal integrity is likely to be central to VSL#3 activity. Intestinal epithelial cells 
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incubated in media with VSL#3 show increased transepithelial resistance. This may be 

mediated by specific elements of the Mitogen-activated protein kinase (MAPK) pathway, 

which was activated by VSL#3. Pathogen-induced reduction in transepithelial resistance 

was diminished by VSL#3, probably due to the prevention of cell structure dysfunction at 

tight junctions [170]. VSL#3 may also alter mucin secretion, which makes up the mucous 

layer in the gastrointestinal tract. Of the nine identified genes, MUC2 is the predominant 

gel-forming mucin. MUC2 was induced in a concentration dependant manner by the 

exposure of the probiotic mixture to cells in media. It was postulated that this would 

correlate with an increase in mucin secretion. Rats fed with VSL#3 for seven days had an 

increase in MUC2 gene expression leading to an increase in the total mucin pool [159] When 

rat colonic loops were exposed to live VSL#3 an increase in mucin secretion was observed 

immediately without the need for a change in the mucin pool. Separate colonisation of the 

bacterial strains in VSL#3 identified that Lactobacilli is most likely to be responsible for 

mucin changes. Mucin secretion is known to effect bacterial adhesion and colonisation, so 

lactobacilli may upregulate MUC2 to improve colonisation. This implies that the benefits to 

intestinal structure are coincidental. One murine model of colitis, dextran-sodium sulphate-

induced colitis, showed no mucin response to VSL#3 treatment. Mucous barrier thickness 

and expression of mucin genes were unchanged and inflammation did not decrease. The 

inactivity of VSL#3 may be a result of the colitis model used, which may have altered 

probiotic mediated effects as VSL#3 did adhere and change the microflora population. Trials 

on intestinal biopsies with ulcerative colitis could aid in supporting or invalidating the effect 

of VSL#3 on mucin. 

Inflammatory mediators also play an important role in the reduced inflammation reported 

after treatment with VSL#3. The expression of TLR2 by dendritic cells is down regulated, 

which lessens the potential for TLR signalling for pro-inflammatory processes. An increase 

in production of IL-10, an anti-inflammatory cytokine, was also observed. This may be as a 

result of the changes to TLR2 or the overall reduction in inflammation. VSL#3 exerts 

multiple direct and indirect effects on gut inflammation which have not been fully 

elucidated, but can be observed in patient trials. While some studies suggest limitations to 

VSL#3 usefulness in UC treatment, further research is needed before they can be confirmed. 

Current information suggests that VSL#3 holds great promise as a low risk adjunctive 

treatment for mild to moderate UC to reduce symptom severity. 

Strains that are identified for use as probiotics should not be pathogenic or carry antibiotic 

resistance as their use would be potentially harmful. There may be other consequences from 

treatment that can lead to physiological harm. As probiotic treatments often utilise bacterial 

strains found in the healthy human gut there is an assumption that probiotic treatment is 

without risks. Low withdrawal rates due to side effects from clinical trials support this 

notion, even in critically ill patients [171]. However, probiotic sepsis, a potentially deadly 

complication, has occasionally been reported [172]. Sepsis may be more likely in individuals 

with severe illness as they may be immunologically compromised.  

HLA-DR is a MHC class 2 surface receptor responsible for identifying and binding to an 

antigen before presenting to the immune system to educate T and B-cells. There are more 
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than a dozen major subtypes of HLA-DR, some of which have been associated with specific 

diseases. The prevalence of serotypes DR2, DR9, and DRB1*0103 is significantly higher in 

people with active UC when compared to a healthy population. This could be a genetic 

factor that indicates a susceptibility to UC [173].Alternatively, the more common strains 

may be created by the body in response to the mucosal damage in the colon as a reparative 

effort [174]. As the prevalence of HLA-DR subtypes differs between populations the 

implications of these results are complex to apply. For example, the DR2 subtype showed a 

definite increased occurrence in UC patients from Japanese, Finn and Siscilian populations. 

In other culturally heterogenous populations the association is less strong or even absent, 

even though the association with DR2 is still significant when considered over all 

populations. DR9 is also more prevalent in Japanese populations, so it may be more 

important when assessing factors of disease susceptibility then in other ethnic groups. 

DRB1*0103 may be applied more specifically as it may be an indicator for how extensive UC 

could be. DR4, though, seems to be protective against UC, as the frequency that is occurs at 

is much lower in people with UC [173].  

Another potential genetic factor in the development of UC is the expression of transcription 

factor XPB1 which regulates secretory and other stress-responsive cells in the endoplasmic 

reticulum stress response. In mice where the factor is absent, intestinal epithelial cells are 

more susceptible to potential colitis inducers and displayed spontaneous enteritis [175]. In 

humans, a variance in XPB1 has been associated with both Crohn’s disease and UC. The 

activity of peroxisome proliferator-activated receptor-gamma (ppar-gamma) is an 

inflammatory system change that is unique to ulcerative colitis. In healthy individuals ppar-

gamma modulates inflammation by attenuating nuclear factor-kappa B (NF-kB), a protein 

present in almost all cells that responds to harmful cell stimuli. Ppar-gamma activity in colonic 

epithelial cells of UC patients is reduced, but gene expression of ppar-gamma is normal. This 

indicates that bacteria present in the gut affect the activity of ppar-gamma in UC [176]. 

Bacterial imbalance may indicate more aggressive disease progression. The intestinal 

samples for the study were taken during surgery required to treat IBD or other conditions 

(primarily colonic cancer), not especially for the study. The age of the patients with atypical 

bacterial balances was on average 8 years younger than that of the control group. The need 

for surgery at a younger age could demonstrate a more aggressive disease. Alternatively, 

the changes in bacteria may be secondary to (not causative of) severe disease. The samples 

with Crohn’s disease in the atypical group were also more likely to have abscesses [154]. 

Whether an imbalanced gut microflora was a contributing factor to the development of the 

abscess, or if the development of the abscess encouraged the growth of bacteria normally 

atypical to the human gut is difficult to discern. 

When the microbial composition in the rectum was compared between patients with UC 

and normal patients, it was found that levels of Bifidobacterium were reduced in the 

samples with the inflammatory disease [177]. This is in keeping with a theory that post-

operative pouchitis after surgical resection of the colon to manage UC is linked to a 

reduction in levels of Lactobacillus lactis and Bifidobacterium [178] Pouchitis occurs when 

the illeoanal pouchy becomes inflamed and passes diarrhoea, sometimes bloody, and causes 
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fever. After up to 10% of surgeries pouchitis becomes recurrent although the cause is 

unknown [179]. 

Even with these changes in microbial balance it has been found that use of antibiotics has no 

effect on the development or progression of UC. This is a marked point of difference 

compared to Crohn’s disease where certain antibiotic therapies have been known to 

complete remission [180]. This may be associated with the absence of serum bacterial 

antibodies in patients with UC. While Crohn’s disease has numerous elevated bacterial 

antibodies, indicating that particular bacteria may play a specific role in the disease, there is 

only one that has been identified in UC; perinuclear antineutrophil antibody. This antibody 

identifies bacterial antigens that have cross-reacted with nuclear antigens and it responds in 

tests to enteric bacterial antigens [181]. This shows a generalized overactive immune 

response targeting much of the gut bacteria resulting in wide spread exacerbation of the 

immune system and damaging further the intestinal tissues including the gut-associated 

lymphoid system. Thus, probiotic treatment poses great potential in treating IBD and 

further research is needed to investigate whether normalizing the gut microfloral 

composition will result in preventing the disease or ameliorating its severity and long term 

complications.  

7. Lupus and probiotics 

Systemic Lupus (SL) is an autoimmune disease which shares a significant inflammatory 

response and overactive and hypersensitive Th2 cells. A study of the autoimmune response 

in SL has found that one type of T cells is commonly found among SL patients. Cytotoxic 

CD8+ T-cell is found to be initially activated at the early stages of the disease and results in 

wide spread generalized activation of a long inflammatory cascade that brings about a full 

SL symptoms.  

Similar to that of T1D, there are clear disturbances in gut microflora in SL, and, similar to 

other autoimmune diseases, a direct link between such changes and the initiation of the 

disease remains unclear. The literature suggests that gut microflora participates in the 

progression and complications of SL. This is brought about through an initial antigenic 

trigger that results in immune system ‘confusion’ which brings about an inflammatory 

response that attacks and destroys body’s own tissues. The role of gut microflora in the 

initiation and development of SL is complex. This starts with a trigger that initiates a shift in 

gut microfloral composition which results in a formation of specific DNA-targeting 

antibodies directed towards specific pathogenic bacterial cells e.g. burkholderia bacteria 

[182]. This antibodies production is exacerbated through wider inflammatory response 

which brings about symptomatic SL and further complications of the disease. In theory and 

similar to the potential beneficial effect of probiotic administration on other autoimmune 

diseases, probiotic treatment, in particular, long term, is anticipated to neutralize gut-

microfloral disturbances that brings about a stabilization of antibody production and 

eventual cessation of the inflammatory response which results in less severity and reduced 

signs and symptoms of the disease. In one study, authors measured the resistance of normal 

gut microflora to the colonization of pathogenic bacteria. This was done by a comprehensive 
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biotyping technique in healthy individuals and patients with inactive and active SL. 

Colonization resistance was found to be lower in active SL patients than in healthy 

individuals (P = 0.09, Wilcoxon one sided, with correction for ties) suggesting that in 

patients with SL, various types and more bacteria are translocating across the gut wall than 

in healthy individuals, due to lower colonization resistances in these patients. Some of these 

may serve as polyclonal B cell activators or as antigens cross-reacting with DNA [183]. Thus, 

administering probiotic bacteria such as bifidobacteria which may restore normal gut-

microflora and reduce the inflammatory response and production of such antibodies should 

be beneficial. However, the use of probiotics in the prevention or treatment of SL remains 

doubtable due to many challenges including dose and frequency required to exert a clinical 

beneficial effect, targeted delivery to live bacteria to the large intestine, bacterial loading and 

bacterial interaction with other drugs.  

Overall, the therapeutic applications of probiotics in autoimmune diseases can be 

summarized in three main mechanisms covering preventative measures as well reliving the 

signs and symptoms of the diseases. This focuses on the role of probiotic ‘long-term’ 

treatment of the gut aiming at manipulating and neutralizing the gut-microfloral bacteria to 

restore healthy body physiology and biochemical reactions, as well as minimizing 

symptoms through ameliorating the inflammatory response. In addition, probiotics have 

been shown to increase non-specific host resistance to pathogenic bacteria. Probiotics are 

believed to deliver their effects via three main mechanisms: (1) competitive exclusion, (2) 

production of anti-bacterial substances and (3) regulation of immune responses.  

7.1. Competitive exclusion 

Probiotics compete with pathogens and toxins for adherence to the intestinal epithelium. 

This concept describes the manner by which probiotic bacteria populate, overtake the 

pathogenic bacteria and go on to completely colonize and ‘crowd’ the gut. 

7.2. Production of anti-bacterial substances  

Probiotics exert anti-bacterial effects on pathogenic bacteria by producing bactericidal 

substances including bacteriocins and acid which work synergistically or alone to inhibit 

pathogenic bacterial growth. Bacteriocins are antimicrobial peptides which are produced by 

some gram positive bacteria while acetic, lactic and propionic acid are produced by a wide 

range of probiotic bacteria leading to a decrease in pH and inhibition of growth of many 

pathogenic gram negative bacteria. 

7.3. Regulation of immune responses 

Infections can disrupt T-cell tolerance [Rocken et al, 1992] due to the enormous bacterial 

load of the intestinal lumen. It appears that sustained exposure to bacterial antigens can 

result in impaired T-cell function [Bronstein-Sitton et al, 2003]. An inadequate function of 

immunoregulatory cells can lead to loss of tolerance.  
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Probiotics regulate immune responses by modulating pathogen induced inflammation 

caused by TLR-mediated signalling pathways. Probiotic bacteria have been shown to skew 

the Th1/Th2 balance toward Th1, which helps down-regulate overactive Th2-mediated 

allergic responses. Effects on the Th1/Th2 balance have been observed in some animal 

models of allergy [184]; however not all strains stimulated Th1 immunity [185, 186]. 

Nonetheless, stimulation of Th1 immunity has been reported in clinical trials [187-191] and 

clinical efficacy has been demonstrated in adults, children and infants for diseases including 

IBS and IBD [192, 193], see Figure 4. 

 

Figure 4. The relationship between LPS endotoxins and inflammation pathology in some autoimmune 

diseases. This figure adapted with modification from Cani P & Delzenne NM [105]. 

8. Safety and toxicology of probiotics 

The World Health Organisation has guidelines for the evaluation of probiotic health claims. 

The guidelines begin by emphasising the importance of identifying the genus and species of 

the probiotic bacteria, as effects are strain specific. The WHO report also outlines assessment 

of probiotic storage, safety and evidence used to substantiate health claims [194]. 

Strains that are identified for use as probiotics should not be pathogenic or carry antibiotic 

resistance as their use would be potentially harmful. There may be other consequences from 

treatment that can lead to physiological harm. As probiotic treatments often utilise bacterial 

strains found in the healthy human gut there is an assumption that probiotic treatment is 
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without risks. Low withdrawal rates due to side effects from clinical trials support this 

notion, even in critically ill patients [171]. However, probiotic sepsis, a potentially deadly 

complication, has occasionally been reported [172]. Sepsis may be more likely in individuals 

with severe illness as they may be immunologically compromised.  

The mechanism of immune system modulation through gut microflora may change during 

certain disease states. A large trial on patients with acute pancreatitis found that 16% 

patients in the probiotic group died compared with 6% of the placebo group, indicating an 

increase in mortality with prophylactic probiotic treatment in such immunocompromised 

patients [195]. This highlights the need for caution when treating a disease state or severity 

that safety has not been established with. 

A range of probiotics have been used to treat mild to moderate UC without severe side 

effects. However, probiotic safety in severe UC has not been established. While patients 

with symptoms that are unresponsive to current therapies may benefit greatly from new 

treatments, until the mechanisms of action of probiotics are better understood the risk to 

patients is also unknown. Accordingly, probiotic administration has shown good safety 

profile in individuals with overall good health status, and may be suffering from mild 

infections or GI disorders [196, 197]. Probiotic safety stems from the fact that many strains 

are of human origin and present in large numbers in human GIT [131]. Accordingly, the 

reported incidences of probiotics inducing bacterial infection and bacteremia are very low 

(18). The only major concern with probiotic administration is the potential of bacterial 

translocation resulting in the induction of antibiotic-resistance strains that may lead to 

pathogenesis and haemodyscrasia [198, 199]. Having said that and as previously explained, 

the risks of infections caused by probiotic treatment is expected to be significant in 

immunocompromised patients [200-204].  

Clinical trials of new treatments for many Ads vary greatly in trial length, inclusion criteria 

and in vivo models used. The diversity of these trials makes meaningful comparison of 

probiotic treatments difficult. For example there is no standard index for UC, with variety of 

different symptom based evaluations, composite scores and patient evaluated scoring 

systems used in clinical trials [205]. Patient inclusion in the trial, response to a treatment, 

and whether remission is induced, is usually determined by a disease activity index score of 

a pre-specified value being met. Comparison of different definitions of success is complex, 

as a patient could be considered in remission by one trial but in a state of active disease by 

another. In addition, clinical trials of treatments of UC are known to have a diverse and 

unpredictable placebo response rate [206]. A 2007 meta-analysis of 40 clinical trials found 

that placebo induced remission rates ranged from 0-40% while placebo response was as high 

as 67% [207]. An unpredictable placebo response can interfere with the perceived usefulness 

of new treatments making findings hard to interpret. On the other hand, clinical trials that 

evaluated outcomes based on subjective scores (physician impression of disease severity, 

patient reported quality of life, etc.) were associated with higher placebo rates of response 

and remission. Use of objective assessments, e.g. the presence of inflammatory markers or 

sigmoidoscopy score, can reduce placebo values and make comparison of clinical trials 

simpler. The patient acceptability and cost of invasive tests like colonoscopies and blood 
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sampling limit their use. Objective scores also do not quantify changes in time off work and 

symptoms like urgency and tenesmus, which are reported to be most important to patients.  

The length of the clinical trial can change both rates of success and placebo responses. 

Shorter trials with fewer study visits lessen the cost of the study and reduce placebo values 

[206]. Long term trials may document a decrease in clinical effectiveness as relapses occur, 

the treatment ceases working and symptoms return. This may be due to the nature of 

disease rather than the treatment, as e.g. 67% of UC patients experience a relapse within the 

first ten years [208]. 

Risk of relapse makes withdrawal of existing therapy prior to commencing clinical trials 

undesirable. As a result, most probiotic treatments are initiated as adjunctive therapy to a 

stable oral dose of 5-aminosalicylic acid or an immunosuppressant. The period of time the 

dosage of other medications must have been stable for prior to the trial varies. The effect of 

these existing medications on the mechanism and efficacy of probiotics is unknown.  

The adoption of a standardised disease activity index and trial endpoints would allow for 

comparison and combination of data from multiple trials. Until then, the value of an 

individual probiotic trial should be assessed with an understanding of how the trial 

characteristics may have influenced the reported results. 

Commercially available probiotics often contain more than one bacterial type. The careful 

selection and administration of multiple strains of bacteria in combination has the potential 

to be more effective than any strain on its own. This concept is supported by a small review 

of 16 studies which found the multiple strain products was more effective than the 

composite single strains 75% of the time. Additionally, a study that did ex vivo screening of 

probiotic strains for beneficial changes in the regulation of T-cells and pro-inflammatory 

cytokines identified that multistrain combinations were more potent, adding to the theory 

that the use of multiple bacterial strains allows for better therapeutic effects.(37) 

Doses may play a role in the comparative effectiveness of a probiotic mixture. The number 

of bacteria in a dose can be as high as the combined quantity from a therapeutically effective 

dose of each composite strain assuming no synergism. The higher combined dose may have 

a greater effect, making the multistrain probiotic therapy more likely to be effective 

especially if synergistic interaction exists between used bacterial strains [209]. Countering 

this as the sole mechanism influencing efficacy are studies where animals were 

administered single strain and multiple strain probiotics to protect against pathogens. 

Although the total dose of each probiotic was the same, the mixtures still had a greater 

protective effect or survival rate, indicating the presence of bacterial synergism [210-212].  

A number of potential mechanisms for additive and synergistic interactions between 

probiotic strains exist. Some are probably the result of fortunate coincidence, while others 

are likely to be due to bacterial adaptation. The mechanism for the synergy may be simple, 

e.g. a byproduct of one bacteria increasing another strains’ rate of growth. Other 

mechanisms may be more complex, involving more than two strains or using intermediaries 

to alter signalling pathways. The potential intricacy of these bacterial interactions prevents 
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any single strain from a multi strain probiotic being identified as the sole cause of a 

therapeutic effect without detailed additional research. Using more strains of bacteria in a 

probiotic preparation does not guarantee a better therapeutic response. Multiple strains of 

bacteria can have an antagonistic effect on each other through the production of agents that 

inhibit growth or competition for resources and adhesion sites. Other bacterial interactions 

could mask the influence of the antagonism on patient response, to the point where it may 

not be identified at all. This means bacteria with no clinical benefit could be included in 

probiotics unnecessarily. 

Given that the effects of probiotics are strain specific, it is not possible to determine whether 

multiple strain probiotics are ‘better’ than single strain probiotics or vice versa. It does seem 

that some bacterial strains do have an increased clinical efficacy in one preparation over the 

other. Additional strain specific research could develop a reference to aid in determining if a 

probiotic bacterial strain is likely to benefit more from the reduced competition when 

administered alone or the potential synergism when multiple strains interact. 

The mechanism of immune modulation through gut microfloral bacteria change during 

certain disease states. A large trial on patients with acute pancreatitis found that 16% 

patients in the probiotic group died compared with 6% of the placebo group, indicating 

an increase in mortality with prophylactic probiotic treatment [195]. This highlights the 

need for caution when treating a disease state or severity that safety has not been 

established with. 

If the use of probiotics is to become part of autoimmune disease therapy, their safety 

concerns may be overcome by thoroughly studying appropriate dosing and frequency, their 

short and long term effect on mucosal membranes and the variation of their effect in 

different populations. 

9. Conclusion 

It is becoming more evident that the initiation, modulation and exacerbation of the 

inflammatory response resulting in ADs, is associated with disturbances of the gut 

microflora, as well as other biophysiological and biochemical processes inside and outside 

the gastrointestinal tract. In vitro studies have elucidated some of the complex proposed 

mechanisms associating gut microfloral disturbances with the development and progress of 

many ADs. Clinical trials have also provided evidence implicating probiotic intake to some 

health benefits noticed in ADs such as UC and T1D. However, significant clinical 

applications of probiotics as first line treatment for ADs have not been demonstrated or 

clearly proven, despite limited success in alleviating signs and symptoms of the diseases. As 

they are safe, probiotics are easily available to patients interested in trialling their effects. 

Many probiotics can be taken only once or twice a day which makes dosing convenient. 

Human trials have, so far, had a low incidence and severity of side effects. However, until 

trials are done using a broader range of disease severities with multiple bacterial strains, 

probiotic use may be limited to mild to moderate disease state and efficacy remains limited 

and at times controversial. 
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Main limitations to probiotic efficacies include formulation challenges, survival rate, cell-

forming-bacterial-units required to exert a clinical effect and the versatility of gut microflora 

in different individuals and different stages of the disease. This makes selection of the 

bacterial strains, dosing volume and frequency and safety of AD patients, challenging. In 

addition, direct comparison of multiple clinical trials is complicated by the variability in 

study endpoints, disease severity assessment and other medication usage. 

Ultimately, the primary treating physician, alongside the patient and the health care team, 

needs to assess whether a patient may benefit from probiotic treatment. If probiotics are to 

be used, trials on populations with a similar disease state to the patient can provide some 

guidance in strain selection. Clinical evidence should be used to determine if probiotic 

treatment is to be adjunctive or not, whether remission or symptom improvement is 

possible and to manage expectations. Disease state activity index scoring can monitor 

patient improvement or deterioration. For the patient, though, it is likely that the only 

monitoring that is meaningful is whether probiotic treatment has improved their perceived 

quality of life, thus, patient perception should always be taken into account when probiotic 

intake is considered. 
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