1 research outputs found

    Biological evaluations of nanocarriers to improve the effectiveness of colorectal cancer treatment

    Get PDF
    Tumor heterogeneity favors tumor tissue to survive and resist drugs, leading to the failure of chemotherapeutic agents to induce a therapeutic response. In addition, the absorption mechanisms, metabolism and excretion of chemotherapeutic drugs, which are commonly used for cancer patients and the lack of specific targeting of these drugs can cause adverse effects on treated patients. Thus, the general objective of this thesis is to investigate the biological activity of targeted poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) as a drug delivery system (DDS) for carvedilol (CVDL) or oxaliplatin (OXA), in vitro and in vivo, to treat colorectal cancer (CRC). DDSs were formulated to achieve this goal. In chapters 2, 3 and 4, our studies were discussed in detail on the formulations and characterizations of NPs as DDSs with ideal characteristics to increase the therapeutic range of drugs at the tumor site. As well as the biological evaluation of these DDS when its anti-inflammatory activity (Chapter 2) and its antitumor activity in vitro (Chapters 2, 3 and 4) and in vivo (Chapters 3 and 4). Taken together, all the DDSs studied in this thesis were able to improve the chemotherapeutic efficiency of the drugs studied in Chapters 2, 3 and 4.Chipsoft B.V.; Percuros B.VLUMC / Geneeskund
    corecore