7 research outputs found

    Quasi-BiHamiltonian Systems and Separability

    Full text link
    Two quasi--biHamiltonian systems with three and four degrees of freedom are presented. These systems are shown to be separable in terms of Nijenhuis coordinates. Moreover the most general Pfaffian quasi-biHamiltonian system with an arbitrary number of degrees of freedom is constructed (in terms of Nijenhuis coordinates) and its separability is proved.Comment: 10 pages, AMS-LaTeX 1.1, to appear in J. Phys. A: Math. Gen. (May 1997

    The quasi-bi-Hamiltonian formulation of the Lagrange top

    Full text link
    Starting from the tri-Hamiltonian formulation of the Lagrange top in a six-dimensional phase space, we discuss the possible reductions of the Poisson tensors, the vector field and its Hamiltonian functions on a four-dimensional space. We show that the vector field of the Lagrange top possesses, on the reduced phase space, a quasi-bi-Hamiltonian formulation, which provides a set of separation variables for the corresponding Hamilton-Jacobi equation.Comment: 12 pages, no figures, LaTeX, to appear in J. Phys. A: Math. Gen. (March 2002

    On the integrability of stationary and restricted flows of the KdV hierarchy.

    Full text link
    A bi--Hamiltonian formulation for stationary flows of the KdV hierarchy is derived in an extended phase space. A map between stationary flows and restricted flows is constructed: in a case it connects an integrable Henon--Heiles system and the Garnier system. Moreover a new integrability scheme for Hamiltonian systems is proposed, holding in the standard phase space.Comment: 25 pages, AMS-LATEX 2.09, no figures, to be published in J. Phys. A: Math. Gen.
    corecore