221 research outputs found

    Circuit Based Quantification: Back to State Set Manipulation within Unbounded Model Checking

    Get PDF
    In this paper a non-canonical circuit-based state set representation is used to efficiently perform quantifier elimination. The novelty of this approach lies in adapting equivalence checking and logic synthesis techniques, to the goal of compacting circuit based state set representations resulting from existential quantification. The method can be efficiently combined with other verification approaches such as inductive and SAT-based pre-image verifications

    A paperfluidic platform to detect Neisseria gonorrhoeae in clinical samples

    Full text link
    Globally, the microbe Neisseria gonorrhoeae (NG) causes 106 million newly documented sexually transmitted infections each year. Once appropriately diagnosed, NG infections can be readily treated with antibiotics, but high-risk patients often do not return to the clinic for treatment if results are not provided at the point of care. A rapid, sensitive molecular diagnostic would help increase NG treatment and reduce the prevalence of this sexually transmitted disease. Here, we report on the design and development of a rapid, highly sensitive, paperfluidic device for point-of-care diagnosis of NG. The device integrates patient swab sample lysis, nucleic acid extraction, thermophilic helicase-dependent amplification (tHDA), an internal amplification control (NGIC), and visual lateral flow detection within an 80 min run time. Limits of NG detection for the NG/NGIC multiplex tHDA assay were determined within the device, and clinical performance was validated retroactively against qPCR-quantified patient samples in a proof-of-concept study. This paperfluidic diagnostic has a clinically relevant limit of detection of 500 NG cells per device with analytical sensitivity down to 10 NG cells per device. In triplicate testing of 40 total urethral and vaginal swab samples, the device had 95% overall sensitivity and 100% specificity, approaching current laboratory-based molecular NG diagnostics. This diagnostic platform could increase access to accurate NG diagnoses to those most in need.This work was funded by the National Institute of Health National Institute of Allergy and Infectious Diseases award number R01 AI113927 to Boston University and the NIH National Institute of Biomedical and Bioengineering award number U54 EB007958 to Johns Hopkins University. (R01 AI113927 - National Institute of Health National Institute of Allergy and Infectious Diseases; U54 EB007958 - NIH National Institute of Biomedical and Bioengineering)Accepted manuscrip

    Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion.

    Get PDF
    The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression. To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and three-dimensional cultures of MCF-10░A cells. We show that upon Dbl expression MCF-10░A cells undergo EMT. In addition, we found that Dbl overexpression sustain

    Partitioning Interpolant-Based Verificationfor effective Unbounded Model Checking

    Get PDF
    Interpolant-based model checking has been shown to be effective on large verification instances, as it efficiently combines automated abstraction and reachability fixed-point checks. On the other hand, methods based on variable quantification have proved their ability to remove free inputs, thus projecting the search space over state variables. In this paper we propose an integrated approach which combines the abstraction power of interpolation with techniques that rely on AIG and/or BDD representations of states, directly supporting variable quantification and fixed-point checks. The underlying idea of this combination is to adopt AIG- or BDD-based quantifications to limit and restrict the search space and the complexity of the interpolant-based approach. The exploited strategies, most of which are individually well-known, are integrated with a new flavor, specifically designed to improve their effectiveness on difficult verification instances. Experimental results, specifically oriented to hard-to-solve verification problems, show the robustness of our approach

    Automated abstraction by incremental refinement in interpolant-based model checking

    Full text link
    Abstract—This paper addresses the field of Unbounded Model Checking (UMC) based on SAT engines, where Craig interpolants have recently gained wide acceptance as an automated abstraction technique. We start from the observation that interpolants can be quite effective on large verification instances. As they operate on SAT-generated refutation proofs, interpolants are very good at automatically abstract facts that are not significant for proofs. In this work, we push forward the new idea of generating abstractions without resorting to SAT proofs, and to accept (reject) abstractions whenever they (do not) fulfill given adequacy constraints. We propose an integrated approach smoothly combining the capabilities of interpolation with abstraction and over-approximation techniques, that do not directly derive from SAT refutation proofs. The driving idea of this combination is to incrementally generate, by refinement, an abstract (over-approximate) image, built up from equivalences, implications, ternary and localization abstraction, then (eventually) from SAT refutation proofs. Experimental results, derived from the verification of hard problems, show the robustness of our approach

    SNIP/p140Cap mRNA expression is an unfavourable prognostic factor in breast cancer and is not expressed in normal breast tissue

    Get PDF
    The prevalence and clinical relevance of SNIP/p140Cap has not been extensively investigated. Here SNIP/p140Cap mRNA expression was studied in 103 breast tumour biopsies, where it was detected in ∼37% of tumour specimens, but not in any normal breast specimens. Expression correlated significantly with unfavourable overall survival. This suggests that SNIP/p140Cap may be a useful diagnostic and prognostic marker for breast cancer and its expression in breast cancer, but not in normal breast tissue, suggests that it may have potential as a therapeutic target

    Proteasome inhibition, the pursuit of new cancer therapeutics, and the adaptor molecule p130Cas

    Get PDF
    Current interest in proteasome inhibitors for cancer therapy has stimulated considerable research efforts to identify the molecular pathway to their cytotoxicity with a view to identifying the mechanisms of sensitivity and resistance as well as informing the development of new drugs. Zhao and Vuori describe this month in BMC Biology experiments indicating a novel role of the adaptor protein p130Cas in sensitivity to apoptosis induced not only by proteasome inhibitors but also by the unrelated drug doxorubicin

    p130Cas is an essential transducer element in ErbB2 transformation

    Get PDF
    The ErbB2 oncogene is often overexpressed in breast tumors and associated with poor clinical outcome. p130Cas represents a nodal scaffold protein regulating cell survival, migration, and proliferation in normal and pathological cells. The functional role of p130Cas in ErbB2-dependent breast tumorigenesis was assessed by its silencing in breast cancer cells derived from mouse mammary tumors overexpressing ErbB2 (N202-1A cells), and by its reexpression in ErbB2-transformed p130Cas-null mouse embryonic fibroblasts. We demonstrate that p130Cas is necessary for ErbB2-dependent foci formation, anchorage-independent growth, and in vivo growth of orthotopic N202-1A tumors. Moreover, intranipple injection of p130Cas-stabilized siRNAs in the mammary gland of Balbc-NeuT mice decreases the growth of spontaneous tumors. In ErbB2-transformed cells, p130Cas is a crucial component of a functional molecular complex consisting of ErbB2, c-Src, and Fak. In human mammary cells, MCF10A.B2, the concomitant activation of ErbB2, and p130Cas overexpression sustain and strengthen signaling, leading to Rac1 activation and MMP9 secretion, thus providing invasive properties. Consistently, p130Cas drives N202-1A cell in vivo lung metastases colonization. These results demonstrate that p130Cas is an essential transducer in ErbB2 transformation and highlight its potential use as a novel therapeutic target in ErbB2 positive human breast cancers.-Cabodi, S., Tinnirello, A., Bisaro, B., Tornillo, G., Camacho-Leal, M. P., Forni, G., Cojoca, R., Iezzi, M., Amici, A., Montani, M., Eva, A., Di Stefano, P., Muthuswamy, S. K., Tarone, G., Turco, E., Defilippi, P. p130Cas is an essential transducer element in ErbB2 transformation
    corecore