5,300 research outputs found

    Reply to Marinatto's comment on "Bell's theorem without inequalities and without probabilities for two observers"

    Full text link
    It is shown that Marinatto's claim [Phys. Rev. Lett. 90, 258901 (2003)] that the proof of "Bell's theorem without inequalities and without probabilities for two observers" [A. Cabello, Phys. Rev. Lett. 86, 1911 (2001)] requires four spacelike separated observers rather than two is unjustified.Comment: REVTeX4, 1 pag

    Bell's theorem without inequalities and without unspeakable information

    Full text link
    A proof of Bell's theorem without inequalities is presented in which distant local setups do not need to be aligned, since the required perfect correlations are achieved for any local rotation of the local setups.Comment: REVTeX4, 4 pages, 1 figure; for Asher Peres' Festschrift, to be published in Found. Phy

    Six-qubit permutation-based decoherence-free orthogonal basis

    Get PDF
    There is a natural orthogonal basis of the 6-qubit decoherence-free (DF) space robust against collective noise. Interestingly, most of the basis states can be obtained from one another just permuting qubits. This property: (a) is useful for encoding qubits in DF subspaces, (b) allows the implementation of the Bennett-Brassard 1984 (BB84) protocol in DF subspaces just permuting qubits, which completes a the method for quantum key distribution using DF states proposed by Boileau et al. [Phys. Rev. Lett. 92, 017901 (2004)], and (c) points out that there is only one 6-qubit DF state which is essentially new (not obtained by permutations) and therefore constitutes an interesting experimental challenge.Comment: REVTeX4, 5 page

    Twin inequality for fully contextual quantum correlations

    Full text link
    Quantum mechanics exhibits a very peculiar form of contextuality. Identifying and connecting the simplest scenarios in which more general theories can or cannot be more contextual than quantum mechanics is a fundamental step in the quest for the principle that singles out quantum contextuality. The former scenario corresponds to the Klyachko-Can-Binicioglu-Shumovsky (KCBS) inequality. Here we show that there is a simple tight inequality, twin to the KCBS, for which quantum contextuality cannot be outperformed. In a sense, this twin inequality is the simplest tool for recognizing fully contextual quantum correlations.Comment: REVTeX4, 4 pages, 1 figur

    Two Party Non-Local Games

    Full text link
    In this work we have introduced two party games with respective winning conditions. One cannot win these games deterministically in the classical world if they are not allowed to communicate at any stage of the game. Interestingly we find out that in quantum world, these winning conditions can be achieved if the players share an entangled state. We also introduced a game which is impossible to win if the players are not allowed to communicate in classical world (both probabilistically and deterministically), yet there exists a perfect quantum strategy by following which, one can attain the winning condition of the game.Comment: Accepted in International Journal of Theoretical Physic

    Experimental Bell inequality violation without the postselection loophole

    Full text link
    We report on an experimental violation of the Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequality using energy-time entangled photons. The experiment is not free of the locality and detection loopholes, but is the first violation of the Bell-CHSH inequality using energy-time entangled photons which is free of the postselection loophole described by Aerts et al. [Phys. Rev. Lett. 83, 2872 (1999)].Comment: 4 pages, 3 figures, v2 minor correction

    Implications of quantum automata for contextuality

    Full text link
    We construct zero-error quantum finite automata (QFAs) for promise problems which cannot be solved by bounded-error probabilistic finite automata (PFAs). Here is a summary of our results: - There is a promise problem solvable by an exact two-way QFA in exponential expected time, but not by any bounded-error sublogarithmic space probabilistic Turing machine (PTM). - There is a promise problem solvable by an exact two-way QFA in quadratic expected time, but not by any bounded-error o(loglogn) o(\log \log n) -space PTMs in polynomial expected time. The same problem can be solvable by a one-way Las Vegas (or exact two-way) QFA with quantum head in linear (expected) time. - There is a promise problem solvable by a Las Vegas realtime QFA, but not by any bounded-error realtime PFA. The same problem can be solvable by an exact two-way QFA in linear expected time but not by any exact two-way PFA. - There is a family of promise problems such that each promise problem can be solvable by a two-state exact realtime QFAs, but, there is no such bound on the number of states of realtime bounded-error PFAs solving the members this family. Our results imply that there exist zero-error quantum computational devices with a \emph{single qubit} of memory that cannot be simulated by any finite memory classical computational model. This provides a computational perspective on results regarding ontological theories of quantum mechanics \cite{Hardy04}, \cite{Montina08}. As a consequence we find that classical automata based simulation models \cite{Kleinmann11}, \cite{Blasiak13} are not sufficiently powerful to simulate quantum contextuality. We conclude by highlighting the interplay between results from automata models and their application to developing a general framework for quantum contextuality.Comment: 22 page
    corecore