17 research outputs found

    1,10-Phenanthroline Analogue Pyridazine-Based N-Heterocyclic Carbene Ligands

    No full text
    Synthesis of a planar, π-conjugated pyridazine-based biscarbene is reported. Starting from 3,6-dimethylpyridazine, the bisimidazolium salt <b>1</b>*<b>2HPF</b><sub><b>6</b></sub> was prepared in a four-step synthesis by chlorination, amination, formylation, and cyclization. The free carbene <b>1</b> can be generated in situ by addition of base. Despite the rigid annelated tricycle, the carbene ligand turns out to be highly flexible upon coordination of transition-metal complexes. With silver­(I) oxide or copper­(I) oxide binuclear carbene complexes with a bridging coordination mode of the ligand are obtained. Transmetalation of both complexes to the respective gold complex is described. The bridging coordination mode of the carbene ligand is similar to that of 2,2′-bipyridine. Reaction of the bisimidazolium salt <b>1*2HPF</b><sub><b>6</b></sub> with potassium acetate and [RhCl­(COD)]<sub>2</sub> leads to a mononuclear rhodium complex with the chelating binding mode of <b>1</b>, resembling strongly the coordination properties of 1,10-phenanthroline

    Boryl Azides in 1,3-Dipolar Cycloadditions

    No full text
    The 1,3-dipolar cycloaddition reaction of boron azides with alkynes has been investigated experimentally and computationally. At room temperature pinBN<sub>3</sub> (pin = pinacolato) reacts with the strained triple bond of cyclooctyne with formation of an oligomeric boryl triazole. Alcoholysis of the oligomer yields the parent 4,5,6,7,8,9-hexahydro-2<i>H</i>-cyclooctatriazole, which could be characterized as a hydrate by X-ray crystallography. A computational analysis of the reaction of tri- and tetracoordinate boron azides R<sub>2</sub>BN<sub>3</sub> (R = H, Me, pin, cat; cat = catecholato) and <i>I</i>Me·H<sub>2</sub>BN<sub>3</sub> (<i>I</i>Me = 2,6-dimethylimidazole-2-ylidene) reveals significant differences in the reactivity depending on the coordination number: tricoordinate boron azides behave as type II 1,3-dipoles, while the tetracoordinate <i>I</i>Me·H<sub>2</sub>BN<sub>3</sub> is an electron-rich 1,3-dipole (type I) that strongly prefers reactions with electron-poor alkynes

    Reactivity of Yttrium Methyl Complexes: Hydrido Transfer Capability of Selected Alkylalanes

    No full text
    The reactivity of alkylaluminum hydrides HAlMe<sub>2</sub>, HAl­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>, and H<sub>2</sub>AlMes* (Mes* = C<sub>6</sub>H<sub>2</sub><i>t</i>Bu<sub>3</sub>-2,4,6) toward yttrium methyl complexes was assessed. From the reaction with [Cp<sub>2</sub>YMe]<sub>2</sub> the corresponding methylated alkylaluminum compounds could be isolated and characterized along with [Cp<sub>2</sub>Y­(thf)­(μ-H)]<sub>2</sub>, obtained upon workup in thf (Cp = C<sub>5</sub>H<sub>5</sub> = cyclopentadienyl). Structurally characterized complexes Cp<sub>14</sub>Y<sub>6</sub>H<sub>3</sub>Cl and Cp<sub>15</sub>Y<sub>6</sub>H<sub>3</sub> represent side-products of the transformation. The reactions of [YMe<sub>3</sub>]<sub><i>n</i></sub> and [(C<sub>5</sub>Me<sub>5</sub>)­YMe<sub>2</sub>]<sub>3</sub> indicated occurrence of hydrido transfer for H<sub>2</sub>AlMes* and led to product mixtures for HAl­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>. Following the reaction of HAlMe<sub>2</sub> with these compounds as well as the half-sandwich derivatives (C<sub>5</sub>Me<sub>4</sub>R)­Y­(AlMe<sub>4</sub>)<sub>2</sub> (R = Me, SiMe<sub>3</sub>) indicated reversible hydrido binding, leading ultimately to the formation of insoluble hydride clusters. The organoaluminum compounds [HAl­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>]<sub>3</sub>, [(μ-H)­(Me)­AlMes*]<sub>2</sub>, and Me<sub>2</sub>AlMes* were analyzed by X-ray crystallography

    Silylamide Complexes of Chromium(II), Manganese(II), and Cobalt(II) Bearing the Ligands N(SiHMe<sub>2</sub>)<sub>2</sub> and N(SiPhMe<sub>2</sub>)<sub>2</sub>

    No full text
    Bis­(dimethylsilyl)­amide and bis­(dimethylphenylsilyl)­amide complexes of the divalent transition metals chromium, manganese, and cobalt were synthesized. Dimeric, donor-free {Mn­[N­(SiHMe<sub>2</sub>)<sub>2</sub>]<sub>2</sub>}<sub>2</sub> could be obtained via two different pathways, a salt metathesis route (utilizing MnCl<sub>2</sub>(thf)<sub>1.5</sub> and LiN­(SiHMe<sub>2</sub>)<sub>2</sub>) and a transsilylamination protocol (utilizing Mn­[N­(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub>(thf) and HN­(SiHMe<sub>2</sub>)<sub>2</sub>). Addition of 1,1,3,3-tetramethylethylendiamine (tmeda) to {Mn­[N­(SiHMe<sub>2</sub>)<sub>2</sub>]<sub>2</sub>}<sub>2</sub> yielded the monomeric adduct Mn­[N­(SiHMe<sub>2</sub>)<sub>2</sub>]<sub>2</sub>(tmeda). The syntheses of Cr­[N­(SiHMe<sub>2</sub>)<sub>2</sub>]<sub>2</sub>(tmeda), Co­[N­(SiMe<sub>3</sub>)<sub>2</sub>]­[N­(SiHMe<sub>2</sub>)<sub>2</sub>]­(tmeda), and Co­[N­(SiHMe<sub>2</sub>)<sub>2</sub>]<sub>2</sub>(tmeda) were achieved by transsilylamination from Cr­[N­(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub>(tmeda) and {Co­[N­(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub>}<sub>2</sub>(μ-tmeda), respectively. Bis­(dimethylphenylsilyl)­amide complexes Mn­[N­(SiMe<sub>2</sub>Ph)<sub>2</sub>]<sub>2</sub>, Cr­[N­(SiMe<sub>2</sub>Ph)<sub>2</sub>]<sub>2</sub>, and Co­[N­(SiMe<sub>2</sub>Ph)<sub>2</sub>]<sub>2</sub>(thf) were obtained via salt metathesis employing MCl<sub>2</sub>(thf)<sub><i>x</i></sub> (M = Cr, Mn, Co) with equimolar amounts of LiN­(SiMe<sub>2</sub>Ph)<sub>2</sub> in <i>n</i>-hexane. Treatment of CrCl<sub>2</sub> with LiN­(SiMe<sub>2</sub>Ph)<sub>2</sub> in thf gave Cr­[N­(SiMe<sub>2</sub>Ph)<sub>2</sub>]<sub>2</sub>(thf)<sub>2</sub>, featuring an almost square planar <i>trans</i>-coordination. All complexes were examined by elemental analyses, DRIFT and UV–vis spectroscopy, as well as X-ray structure analysis, paying particular attention to secondary M---SiH β-agostic and M---π­(arene) interactions. Magnetic moments were determined by Evans’ method

    Rare-Earth-Metal Allyl Complexes Supported by the [2‑(<i>N</i>,<i>N</i>‑Dimethylamino)ethyl]tetramethylcyclopentadienyl Ligand: Structural Characterization, Reactivity, and Isoprene Polymerization

    No full text
    Rare-earth-metal half-sandwich allyl complexes bearing an amino-functionalized cyclopentadienyl ligand (Cp<sup>NMe2</sup> = 1-[2-(<i>N</i>,<i>N</i>-dimethylamino)­ethyl]-2,3,4,5-tetramethylcyclopentadienyl) were synthesized in a two-step salt-metathesis reaction. Treatment of LnCl<sub>3</sub>(THF)<sub><i>x</i></sub> with LiCp<sup>NMe2</sup>, followed by an in situ reaction with the Grignard reagent C<sub>3</sub>H<sub>5</sub>MgCl, generated the bis­(allyl) half-sandwich complexes Cp<sup>NMe2</sup>Ln­(η<sup>3</sup>-C<sub>3</sub>H<sub>5</sub>)<sub>2</sub> only for the smaller rare-earth metals (Ln = Y, Ho, Lu) in good yields (82–88%). In case of the larger neodymium, the dimeric mono­(allyl) chlorido half-sandwich complex [Cp<sup>NMe2</sup>Nd­(η<sup>3</sup>-C<sub>3</sub>H<sub>5</sub>)­(μ-Cl)]<sub>2</sub> was obtained in 68% yield. All complexes show moderate to high activity in isoprene polymerization upon cationization with organoborates [Ph<sub>3</sub>C]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] and [PhNMe<sub>2</sub>H]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>], the yttrium, holmium, and neodymium metal centers yielding mainly 3,4-microstructures (maximum 79%). Addition of 10 equiv of AlMe<sub>3</sub> to the catalyst systems Cp<sup>NMe2</sup>Ln­(η<sup>3</sup>-C<sub>3</sub>H<sub>5</sub>)<sub>2</sub> (Ln = Y, Ho)/[PhNMe<sub>2</sub>H]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] and [Cp<sup>NMe2</sup>Nd­(η<sup>3</sup>-C<sub>3</sub>H<sub>5</sub>)­(μ-Cl)]<sub>2</sub>/[PhNMe<sub>2</sub>H]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] switched the polyisoprene stereoregularity from 3,4-specific to trans-1,4-selective (maximum 85%). The use of Al<i>i</i>Bu<sub>3</sub> instead led to polymers with mainly cis-1,4-microstructure for the monomeric yttrium and holmium complexes (maximum 74%). Treatment of the bis­(allyl) complexes with Et<sub>2</sub>AlCl (as cocatalyst) did not provide active species for isoprene polymerization but led to [allyl] → [Cl] exchange and isolation of the hexameric rare-earth-metal clusters [{(Cp<sup>NMe2AlEt3</sup>)<sub>2</sub>(Cp<sup>NMe2</sup>)­Ln<sub>3</sub>(μ<sub>2</sub>-Cl)<sub>3</sub>(μ<sub>3</sub>-Cl)<sub>2</sub>}­(μ<sub>2</sub>-Cl)]<sub>2</sub> (Ln = Y, Ho). The complexes Cp<sup>NMe2</sup>Ln­(η<sup>3</sup>-C<sub>3</sub>H<sub>5</sub>)<sub>2</sub> (Ln = Y, Ho, Lu), [Cp<sup>NMe2</sup>Nd­(η<sup>3</sup>-C<sub>3</sub>H<sub>5</sub>)­(μ-Cl)]<sub>2</sub>, and [{(Cp<sup>NMe2AlEt3</sup>)<sub>2</sub>(Cp<sup>NMe2</sup>)­Ln<sub>3</sub>(μ<sub>2</sub>-Cl)<sub>3</sub>(μ<sub>3</sub>-Cl)<sub>2</sub>}­(μ<sub>2</sub>-Cl)]<sub>2</sub> (Ln = Y, Ho) were analyzed by X-ray crystallography

    Versatile Ln<sub>2</sub>(μ-NR)<sub>2</sub>‑Imide Platforms for Ligand Exchange and Isoprene Polymerization

    No full text
    Bimetallic rare-earth-metal imide complexes Ln<sub>2</sub>(μ<sub>2</sub>-Ndipp)­(μ<sub>3</sub>-Ndipp)­[(μ<sub>2</sub>-Me)<sub>2</sub>AlMe]­(AlMe<sub>4</sub>)<sub>2</sub> (<b>3</b>-Ln; Ln = Y, La, Ce, Nd; dipp = 2,6-diisopropylphenyl) have been obtained from the reaction of Ln­(AlMe<sub>4</sub>)<sub>3</sub> (<b>1</b>-Ln) with Li­(NHdipp) (<b>2</b>). X-ray diffraction studies of toluene-soluble <b>3</b>-Ln revealed an unusual Ln­[{(μ<sub>2</sub>-Me)<sub>2</sub>AlMe}­(μ<sub>3</sub>-Ndipp)]­Ln moiety as the most striking feature. Facile salt-metathetical exchange of the tetramethylaluminato ligands in <b>3</b>-Ln with K­(L) (L = N­(SiMe<sub>3</sub>)<sub>2</sub>, Cp′) allowed for the isolation of Ln<sub>2</sub>(Ndipp)<sub>2</sub>[N­(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub>(AlMe<sub>3</sub>) (<b>4</b>-La), partially exchanged Ln<sub>2</sub>(Ndipp)<sub>2</sub>(Cp′)­(AlMe<sub>4</sub>)­(AlMe<sub>3</sub>) (<b>5</b>-La, Cp′ = C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>), and Ln<sub>2</sub>(Ndipp)<sub>2</sub>(Cp′)<sub>2</sub>(AlMe<sub>3</sub>) (<b>6</b>-La). Attempted cleavage of the AlMe<sub>3</sub> moiety in <b>3</b>-Ln with THF led to C–H bond activation of one of the isopropyl methine moieties to produce Ln<sub>2</sub>(μ<sub>2</sub>-Ndipp)­[(μ<sub>3</sub>-NC<sub>6</sub>H<sub>3</sub>-2-CMe<sub>2</sub>-6-<i>i</i>Pr)­Al­(μ<sub>2</sub>-Me)<sub>2</sub>]­(AlMe<sub>4</sub>)<sub>2</sub> (<b>7</b>-La). Selective cleavage of the bridging AlMe<sub>3</sub> “cap” was achieved by addition of DMAP (DMAP = 4-dimethylaminopyridine) to produce [Ln­(μ<sub>2</sub>-Ndipp)­(AlMe<sub>4</sub>)­(DMAP)]<sub><i>n</i></sub> (<b>8</b>-Ln; Ln = La, Ce) and concomitantly DMAP·AlMe<sub>3</sub>. The organoaluminum-free compounds [Ln­(μ<sub>2</sub>-Ndipp)­{N­(SiMe<sub>3</sub>)<sub>2</sub>}­(DMAP)]<sub>2</sub> (<b>9</b>-Ln; Ln = La, Ce), [Ln­(μ<sub>2</sub>-Ndipp)­(Cp′)­(DMAP)]<sub>2</sub> (<b>10</b>-La), and [Ln­(μ<sub>2</sub>-Ndipp)­(OAr)­(DMAP)]<sub>2</sub> (<b>11</b>-Ln; Ln = La, Ce; Ar = 2,6-di-<i>tert</i>-butyl-4-methylphenyl) were obtained via reactions of <b>8</b>-Ln with K­(L) (L = Cp′, N­(SiMe<sub>3</sub>)<sub>2</sub>, OAr). In the presence of activators [Ph<sub>3</sub>C]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] and [PhNMe<sub>2</sub>H]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>], AlEt<sub>2</sub>Cl complexes <b>3</b>-Ln, <b>5</b>-Ln, and <b>7</b>-Ln initiate the polymerization of isoprene to yield PIPs with narrow molecular weight distributions, involving new imido-supported bimetallic catalysts

    Half-Sandwich Rare-Earth-Metal Alkylaluminate Complexes Bearing Peripheral Boryl Ligands

    No full text
    [(C<sub>5</sub>Me<sub>5</sub>)­LnMe<sub>2</sub>]<sub>3</sub> (Ln = Y, Lu) dissolve readily in a <i>n</i>-hexane/toluene mixture upon addition of 3 equiv of the organoaluminum boryl compound [Me<sub>2</sub>Al­{B­(NDippCH)<sub>2</sub>}]<sub>2</sub> (Dipp = C<sub>6</sub>H<sub>3</sub><i>i</i>Pr<sub>2</sub>-2,6). The half-sandwich complexes (C<sub>5</sub>Me<sub>5</sub>)­Ln­[(AlMe<sub>3</sub>)­{B­(NDippCH)<sub>2</sub>}]<sub>2</sub> thus formed display unsymmetrical heteroaluminate coordination not only in the solid state but also at lower temperatures in solution, which is distinct from the behavior of the homoaluminate congeners (C<sub>5</sub>Me<sub>5</sub>)­Ln­(AlMe<sub>4</sub>)<sub>2</sub>. The effect of homo- versus heteroaluminate coordination is assessed in the coordinative polymerization of isoprene

    A Dimethylgallium Boryl Complex and Its Methyllithium Addition Compound

    No full text
    The three-coordinate complex Me<sub>2</sub>Ga­[B­(NArCH)<sub>2</sub>] (Ar = C<sub>6</sub>H<sub>3</sub><i>i</i>Pr<sub>2</sub>-2,6) is accessible via a tandem Lewis acid–base metathesis protocol employing (THF)<sub>2</sub>Li­[B­(NArCH)<sub>2</sub>] and GaMe<sub>3</sub>. It features a very short Ga–B bond of 2.067(3) Å, which was further investigated by DFT calculations and the analysis of the electron density. Reaction of MeLi with Me<sub>2</sub>Ga­[B­(NArCH)<sub>2</sub>] forms tetrameric [LiMe<sub>3</sub>Ga­{B­(NArCH)<sub>2</sub>}]<sub>4</sub> with a “nanowheel” structure

    Half-Sandwich Rare-Earth-Metal Alkylaluminate Complexes Bearing Peripheral Boryl Ligands

    No full text
    [(C<sub>5</sub>Me<sub>5</sub>)­LnMe<sub>2</sub>]<sub>3</sub> (Ln = Y, Lu) dissolve readily in a <i>n</i>-hexane/toluene mixture upon addition of 3 equiv of the organoaluminum boryl compound [Me<sub>2</sub>Al­{B­(NDippCH)<sub>2</sub>}]<sub>2</sub> (Dipp = C<sub>6</sub>H<sub>3</sub><i>i</i>Pr<sub>2</sub>-2,6). The half-sandwich complexes (C<sub>5</sub>Me<sub>5</sub>)­Ln­[(AlMe<sub>3</sub>)­{B­(NDippCH)<sub>2</sub>}]<sub>2</sub> thus formed display unsymmetrical heteroaluminate coordination not only in the solid state but also at lower temperatures in solution, which is distinct from the behavior of the homoaluminate congeners (C<sub>5</sub>Me<sub>5</sub>)­Ln­(AlMe<sub>4</sub>)<sub>2</sub>. The effect of homo- versus heteroaluminate coordination is assessed in the coordinative polymerization of isoprene

    Tris(pyrazolyl)borate Complexes of the Alkaline-Earth Metals: Alkylaluminate Precursors and Schlenk-Type Rearrangements

    No full text
    A series of 3,5-substituted tris­(pyrazolyl)­borate (Tp<sup>R,Me</sup>; R = Me, Ph, <i>t</i>Bu) complexes of the alkaline-earth metals (Mg, Ca, Ba) was synthesized by salt metathesis reactions. The influence of different organometallic precursors on Schlenk-type rearrangement reactions was studied, putting emphasis on the metal size and the steric encumbrance of the Tp ligands. Magnesium alkyls MgR<sub>2</sub> (R = AlMe<sub>4</sub>, CH<sub>3</sub>) react with KTp<sup>R,Me</sup> to form the heteroleptic complexes (Tp<sup>Me,Me</sup>)­Mg­(CH<sub>3</sub>), (Tp<sup><i>t</i>Bu,Me</sup>)­Mg­(CH<sub>3</sub>), and (Tp<sup>Me,Me</sup>)­Mg­(AlMe<sub>4</sub>). The latter tetramethylaluminate complex can also be obtained by treatment of Tp<sup>Me,Me</sup>Mg­(CH<sub>3</sub>) with an excess of trimethylaluminum. The formally six-coordinate cyclopentadienyl derivative (C<sub>5</sub>Me<sub>5</sub>)­Mg­(Me)­(thf)<sub>2</sub> is synthesized from MeMgBr and 1 equiv of K­(C<sub>5</sub>Me<sub>5</sub>). Equimolar reactions of the tetraethylaluminates [M­(AlEt<sub>4</sub>)<sub>2</sub>]<sub><i>n</i></sub> of the heavier alkaline-earth metals calcium and barium with KTp<sup>R,Me</sup> give the homoleptic complexes of Ca­(Tp<sup>R,Ph</sup>)<sub>2</sub> and Ba­(Tp<sup>R,Me</sup>)<sub>2</sub>. Heterotrimetallic [BaK­(AlEt<sub>4</sub>)<sub>3</sub>]<sub><i>n</i></sub> is identified as a ligand rearrangement product and can be independently obtained by adding [K­(AlEt<sub>4</sub>)]<sub><i>n</i></sub> to [Ba­(AlEt<sub>4</sub>)<sub>2</sub>]<sub><i>n</i></sub>. Treatment of Ba­[N­(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub>(thf)<sub>2</sub> with KTp<sup>Me,Me</sup> generates the heteroleptic complex (Tp<sup>Me,Me</sup>)­Ba­[N­(SiMe<sub>3</sub>)<sub>2</sub>]­(thf)<sub>2</sub>. All complexes are fully characterized including X-ray structure analyses
    corecore